Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by nomtbf Leave a Comment

Just a Quick Question

Just a Quick Question

It Started With a Question

Luke Gattuso Reliable Drugs Liquors https://www.flickr.com/photos/dogwelder/34646237/in/gallery-fms95032-72157649635411636/
Luke Gattuso
Reliable Drugs Liquors

It is the idea to eradicate MTBF from common use. The first question was

How do you explain what MTBF is and isn’t to someone that misunderstand MTBF?

[Read more…]

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

Maintenance and Statistics Without MTBF

Maintenance and Statistics Without MTBF

Maintenance Statistics without MTBF

Reliable, ADM in afternoon light by Seth Anderson,
Reliable, ADM in afternoon light by Seth Anderson

How does your equipment fail? How do you plan for spares? Do you use your existing failure data to help refine your maintenance planning?

Given the title of the article, these questions are reasonable. As either a plant reliability or maintenance engineer do you also rely on gut feel to refine your estimates? If you rely on MTBF or similar metrics, you most likely do not trust the data to provide useful answers. [Read more…]

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

What is the Purpose of Reliability Predictions

What is the Purpose of Reliability Predictions

In Response to ‘What was the Original Purpose of MTBF Predictions?’

Staci Myers, The Old Reliable

Guest Post by Andrew Rowland, Executive Consultant, ReliaQual Associates, LLC, www.reliaqual.com in response to the ‘Reliability Predictions‘ article.

Hi Fred,

In the section on predictions you mention Dr. Box’s oft quoted
statement that “..all models are wrong, but some are useful.”  In the
same book Dr. Box also wrote, “Remember that all models are wrong; the
practical question is how wrong do they have to be to not be useful.” [see these and other quote by Dr. George Box here]

Reliability predictions are intended to be used as risk and resource
management tools.  For example, a prediction can be used to:

  • Compare alternative designs.
  • Used to guide improvement by showing the highest contributors to failure.
  • Evaluate the impact of proposed changes.
  • Evaluate the need for environmental controls.
  • Evaluate the significance of reported failures.

None of these require that the model provide an accurate prediction of
field reliability.  The absolute values aren’t important for any of the
above tasks, the relative values are.  This is true whether you express
the result as a hazard rate/MTBF or as a reliability.  Handbook methods
provide a common basis for calculating these relative values; a
standard as it were.  The model is wrong, but if used properly it can
be useful.

Think about the use of RPN’s in certain FMEA.  The absolute value of
the RPN is meaningless, the relative value is what’s important.  For
sure, an RPN of 600 is high, unless every other RPN is greater than
600.  Similarly, an RPN of 100 isn’t very large, unless every other RPN
is less than 100.  The RPN is wrong as a model of risk, but it can be
useful.

I once worked at an industrial facility where the engineers would dump
a load of process data into a spreadsheet.  Then they would fit a
polynomial trend line to the raw data.  They would increase the order
of the polynomial until R^2 = 1 or they reached the maximum order
supported by the spreadsheet software.  The engineers and management
used these “models” to support all sorts of decision making.  They were
often frustrated because they seemed to be dealing with the same
problems over and over.  The problem wasn’t with the method, it was
with the organization’s misunderstanding, and subsequent misuse, of
regression and model building.  In this case, the model was so wrong it
wasn’t just useless, it was often a detriment.

Reliability predictions often get press.  In my experience, this is
mostly the result of misunderstanding of their purpose and misuse of
the results.  I haven’t used every handbook method out there, but each
that I have used state somewhere that the prediction is not intended to
represent actual field reliability.  For example, MIL-HDBK-217 states,

“…a reliability prediction should never be assumed to represent the expected field reliability.”

I think the term “prediction” misleads
the consumer into believing the end result is somehow an accurate
representation of fielded reliability.  When this ends up not being the
case, rather than reflecting internally, we prefer to conclude the
model must be flawed.

All that said, I would be one of the first to admit the handbooks could
and should be updated and improved.  We should strive to make the
models less wrong, but we should also strive to use them properly.
Using them as estimators of field reliability is wrong whether the
results are expressed as MTBF or reliability.

Best Regards,

Andrew

 

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

Reliability Growth without MTBF

Reliability Growth without MTBF

Reliability Growth and MTBF

Peter Lee Reliable https://www.flickr.com/photos/oldpatterns/5858406571/in/gallery-fms95032-72157649635411636/
Peter Lee, Reliable

Really? Is MTBF the only way to work with reliability growth?

Received this question via LinkedIn (feel free to connect with me there) and hadn’t given it much thought before. I am familiar with a few growth models and regularly have seen MTBF in use. Thus discounted the modeling as an approach of little interest to me or my clients.

MTBF measures the inverse of the average failure rate, when in many cases we really want to know about the first or tenth percentile of time to failure. Measuring and tracking the average time to failure provides little information about the onset of the first few failures.

Reliability Growth Models

Did just a quick check of common reliability growth models and found a few in the NIST Engineering Statistics Handbook  http://www.itl.nist.gov/div898/handbook/apr/section1/apr19.htm .

The Homogeneous Poisson Process (HPP) when the failure rate is constant over the time period of interest. This relies on the exponential distribution and the assumption of a stable and random arrival of failures, which is almost always not true (in my experience). It’s a convenient assumption as it makes the math a lot simpler, yet provides only a crude model and poor results.

The Non-Homogeneous Poisson process (NHPP) Power Law and Exponential Law models provide information based on the cumulative number of failures over time. These models rely on the notion that any system has a finite number of design errors that once resolved create a system that has a HPP behavior.

Duane Plot provides a graphical means to show cumulative failures over time. When the arrival of failures slows the curve decreases in slope effectively bending over. This provides a means to estimate the final failure rate (average unfortunately).

What I use instead

Given my dislike of all things MTBF, I’ve not used these model to estimate MTBF. Instead stay with the Duane plot and graphically track when the team is finding and fixing enough faults in the design.

I also tend to use reliability block diagrams (RBD) with each block modeled with the appropriate reliability distribution. For a series model then all we need to do is multiple the reliability value from each block for time t (say warranty period, or mission time, etc.) to estimate the system reliability at time t.

For complex systems with some amount of redundancy the RBD does get a bit more complicated.  For very complex systems with degraded modes of operation or significant repair times then use Petri Nets or Markov Models to properly model.

In the vast majority of cases a simple RBD is sufficient to capture and understand the reliability of a system. This allows the team to focus on improving weak areas and reduce uncertainty though improving reliability estimates. An RBD does not require nor assume an exponential distribution and the math is easy enough to manage, often even in your favorite spreadsheet.

Summary

Reliability growth starts with model of the estimated number of failures over a time period. Testing then provides a value for that estimate. This does not require the use of MTBF, so instead of assuming a constant failure rate, focus on the failure mechanisms and use a simple RBD to build a system model. The reliability growth is the result of identifying areas for improvement and doing the improvement. RBD, in my experience, provides a great way to communicate with the team where to focus improvements.

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

Recent Questions on MTTF

Recent Questions on MTTF

Questions about MTTF

raymondclarkeimages Reliable https://www.flickr.com/photos/rclarkeimages/8212393147/in/gallery-fms95032-72157649635411636/
raymondclarkeimages
Reliable

Over the past week I’ve seen or received a couple of questions about MTTF. One was on how to use failure data to calculate MTTF, another on how to estimate Weibull parameters after assuming a constant rate of failure.

It is good to see such questions, as it means the person is curious enough to take the time to ask. [Read more…]

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

How to Justify Using the Exponential Distribution

How to Justify Using the Exponential Distribution

Grant Hutchinson Reliable
Grant Hutchinson
Reliable

Do you check assumptions? Not all assumptions are equal as some may lead you to a costly decision.

We regularly make assumptions about the uniformity of material, the consistency of part to part performance, and many other engineering elements of a design or process. We have to simply the problems we face in order to work out solutions and make decisions. [Read more…]

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

How to Ask for Component Reliability Information

How to Ask for Component Reliability Information

Supplier Reliability Information Requests

Image of Reliable Drugs Liquors Sign
CC BY-NC Luke Gattuso http://fmsrel.com/1DaHcnO

Every now and then we need to ask a supplier for a reliability estimate for a component they produce. Our team may be considering adding the part to a system and would like to know if it is reliable enough to meet our needs. [Read more…]

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

5 Steps to Establish a Meaningful Reliability Goal

5 Steps to Establish a Meaningful Reliability Goal

 

Establishing a Reliability Goal

iStock_000011864395SmallThe basic question of ‘How long should it last?” may be the first question you consider related to reliability of your product or production equipment. Ideally we would like to create a product that will never fail for our customers, or a set of equipment that just keeps running. [Read more…]

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

An Interview with Fred about MTBF

The NoMTBF Interview

Tim Rodgers interviews Fred Schenkelberg, consultant and blogger of NoMTBF, concerning Fred’s work and writing around the perils of MTBF.

We range from what started the site and the common issues caused by using MTBF. Then we discuss using reliability instead.

[Read more…]

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

Book and Course projects

Book and Course projects

Traffic

Over the past two weeks this site has received over 150 visitors each weekday. From what I can see in the analytics and from a few conversations with folks, the site provides insights and information around the use of MTBF, plus basic information concerning reliability engineering.

Google tends to like the site as they agree that visitors like the site, too.

Book project in search of feedback

Given the interest and plenty of encouragement (and helpful suggestions) I’m putting together a book based on the NoMTBF material. Not just bashing MTBF, although there is plenty of that, but also the steps to use reliability or other measure that provide better information.

I have the basic outline and draft completed and am now ready for some feedback. If you’d like to review the work, conditional on you providing you feedback, suggestions, ideas and comments, let me know and I’ll send you a draft copy.

The draft needs work on formatting, layout, adding clean graphics, etc. Yet the outline and basic text is there.

Can you follow the argument, is the writing clear, is there anything missing, how about the order or emphasis?

It’s not a long work, right now about 22,000 words or depending on book page size, fonts size, margins, etc. about 100 to 120 pages. In word it has 73 pages right now without any attention to formatting.

If you have the time and interest let me know and I’ll send you copy, but you have to comment, critic, and make suggestions. I really would like this work to be useful for you and for use to encourage others to avoid using MTBF.

Course project in search of ideas and direction

This period of reflection concerning the NoMTBF project has reinforced the idea that we need to provide something concrete and positive to do instead of just not doing MTBF. Part of the issue is our education system, standards, and textbooks as they often include MTBF in examples and at length in the discussion.

So, the idea is to create a course for experienced reliability professionals and interested engineers and managers with an interest in reliability, that focuses on reliability metrics from goal setting to tracking performance.

I’ve the technology to put together an online course that could be self paced or provided on a fixed schedule (say weekly). It could include short lectures, discussions, reading material and quizzes or examples to work.

Here’s a draft outline – what do you think?

  1. Reliability definition and how it is used in engineering decision making

  2. Common reliability measures: pros and cons

  3. Reliability and Availability Goal setting – connecting the goal to your business objectives

  4. Estimating reliability for comparison to the goals

  5. Tracking reliability and reporting performance

  6. Reliability testing with results that compare to goals

  7. Reliability modeling that leads to meaningful discussions and decisions

  8. Common mistakes and remedies concerning reliability measures

  9. How to get useful reliability information from vendors

(plenty of opportunity for bashing MTBF, yet if done in contrast to much better methods and measures, may provide really practical and useful information.)

So, thoughts? What would you want added, emphasized, and what would you want to be main take aways for each topics? What would you like to see in the course for yourself or for those you’d recommend take the course?

If you’d like to participate in the course project, I’m very open to your ideas and suggestions. Maybe help create and present a topic, provide examples, or sample problems or discussion questions.

Anyway, looking for feedback and ideas to make the NoMTBF site much more positive and useful for the reliability engineering community and for anyone interested in reliability.

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

Well thought out feedback

A note from Scott – providing feedback on the NoMTBF site.

#123317939 / gettyimages.com

Hi Fred,

Your website has generated quite a bit of valid conversation about MTBF. I applaud you for that. Honestly though I have mixed feelings about some of what you present and thought I’d write this lengthy e-mail to provide some feedback. I hope you take this in the right light as constructive criticism from someone who, overall, appreciate your efforts.

Clarifications

Let me start with a point I disagree with. In your opening slide show “Thinking about MTBF” I think the “Common Confusion” slide could be better presented. Many viewers would interpret that slide to say that the MTBF is not the mean. Of course MTBF is the mean. Your point is that, while it is the mean, the distribution is not Gaussian. Fair enough. Funny thing is I’ve actually had quality engineers try and tell me the MTBF is not the mean of the distribution and I’m afraid your slide may perpetuate that misunderstanding.

In the same vein, later in the talk, and in the other sections on your site, you seem to indicate that the MTBF is not the expected value (See Perils “I heard one design team manager explain MTBF as the time to expect from one failure to the next.”). Of course the MTBF is the expected value. That is from a pure mathematical sense (as you discuss earlier in this section). So I’m confused on your point here. I guess you are commenting on the laymen’s feeling for “expected” value. Which leads me to my next section.

Lack Of Understanding of Statistics

It almost appears that one of the premises of NoMTBF is that many people do not understand statistics and therefore we should not confuse them by using MTBF. I disagree with this. For example, many people don’t understand the difference between median and mean but no one is suggesting we remove those terms. Similarly because many people incorrectly assume a Gaussian distribution when they hear the term mean is hardly justification for removing the term MTBF. The problem is education not the definition. Same point for expectation. Because the average is some value does not imply all samples will be equal to that value. Anyone who thinks that, in my opinion needs more education in statistic and we shouldn’t try and “simplify” to account for lack of education.

Constant Failure Rate

I don’t really accept your implication that using MTBF implies constant failure rate. The proper definition is the integral form you present in a number of spots but I agree that many tie these two together. I think one of the themes of your website is that the constant failure rate assumption is not valid. In that, I’m in 100% agreement and applaud your efforts. (I guess the site name would not have the same panache if it was called NoConstantFailureRate). Clearly the constant failure rate model often does not apply and reducing all of reliability to one number is a gross simplification.

Leadership

So where should people go instead? Just bashing something is not a solution. Your website really has had an impact but in a strange way sometimes it has had the opposite impact than what I think we would both like. I’ve had quality managers who did not want to gather the data on field failure with, in part, the justification that MTBF is bogus statistics. OK MTBF is not perfect but I’m sure we agree that the way to improve reliability is to gather data as a first step.

You have quite a following and, personally, I’d like to see you to lead more. Yes MTBF is a simplification but I also don’t expect to pick up a data sheet and see physics of failure paper stabled to the back of it or a chart of reliability over time. Fact is many complex things get reduced to a few key numbers (e.g. horsepower, MPG, 0 to 60 time for a car). I think your Actions/Alternative Metric is addressing this. Stating a reliability percentage over a time interval is an intriguing alternative. I like it. If that is your alternative then, personally I’d like to see it more clearly emphasized across the site. I’d also like to see you develop it more. How does one determine reliability % and duration from the Weibull parameters? How would one put together a reliability block diagram and estimate overall reliability if subcomponents were specified in this manner? I don’t know that answer to these questions and I’d be interested in reading more.

As I stated in the beginning, I hope you take this in the right light. While obviously I don’t agree with everything on your site you have many extremely valid points and you are doing a great job stimulating discussion. Thanks for your efforts.

Scott Diamond
Vice President of Quality and Customer Excellence
Surveillance Group
FLIR Systems Inc.

 

— Ed note:

Thanks Scott for the insightful and meaningful feedback – I will be making some adjustments and improvements. Thanks for the careful reading and taking time to provide you suggestions and comments. Very much appreciated. Fred

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

Top 5 Popular NoMTBF Posts

Summer Break

Taking a week off away from the article writing so in the vain of summer reruns, providing a list to the top five posts from the NoMTBF site.

In no particular order:

[display-posts tag=”popular”  posts_per_page=”5″ include_excerpt=”true”]

 

Enjoy these again or for the first time.

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

Customer Reliability Talk

Customer Reliability Talk

How do your customers talk about reliability

And, what can you do about it?

As engineers laying out a factory or designing a new product we have to meet the reliability expectations of our customers. It would be great if the system would not fail or need repair, yet that is often not the case. [Read more…]

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

If not MTBF

If not MTBF, then what should we use instead?

 

#163560667 / gettyimages.com

MTBF has issues. It is commonly mis-understood and mis-used. I find it hard to interpret and use for any meaningful discussion of reliability.

The entire premise of the NoMTBF site is to encourage you to not use MTBF.

There are exhaustive writings on setting meaningful goals and metrics in the business literature. A couple of tenants seem common: [Read more…]

Filed Under: Articles, NoMTBF

by nomtbf Leave a Comment

An Industry of MTBF Use

What can you do if everyone across you industry is using MTBF?

  • First, stop using MTBF yourself.
  • Second, show others the information that is found in using Reliability directly rather than using MTBF.
  • Third, translate your work back to MTBF and be very clear about duration and other assumptions.

[Read more…]

Filed Under: Articles, NoMTBF

  • « Previous Page
  • 1
  • …
  • 6
  • 7
  • 8
  • 9
  • 10
  • …
  • 12
  • Next Page »

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ]

[/popup]

The Accendo Reliablity logo of a sun face in circuit

Please login to have full access.




Lost Password? Click here to have it emailed to you.

Not already a member? It's free and takes only a moment to create an account with your email only.

Join

Your membership brings you all these free resources:

  • Live, monthly reliability webinars & recordings
  • eBooks: Finding Value and Reliability Maturity
  • How To articles & insights
  • Podcasts & additional information within podcast show notes
  • Podcast suggestion box to send us a question or topic for a future episode
  • Course (some with a fee)
  • Largest reliability events calendar
  • Course on a range of topics - coming soon
  • Master reliability classes - coming soon
  • Basic tutorial articles - coming soon
  • With more in the works just for members
Speaking of Reliability podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Dare to Know podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Accendo Reliability Webinar Series podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy