Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

All articles listed in reverse chronological order.

by Adam Bahret Leave a Comment

Not a car analogy: How RG is like cooking

Not a car analogy: How RG is like cooking

Anyone who knows me knows that I tend to only think in terms of cars. I can remember the car someone pulled up in at a party four years ago, but will have no recollection of what their name was. Moreso, I view culture, politics and economics through a sort of automotive anthropologist lens. For example, darker colors are more popular in luxury car sales when an economic downturn has occurred and major shifts in industrial focus will be reflected in increased offerings of economy cars that can hold 4 to 5 people. I think you can see what the problem is here.

In any case, I came up with a cooking analogy (in no way automotive related) for a principal of data organization and I have to say, it’s actually pretty good! So, I am documenting it here.
[Read more…]

Filed Under: Apex Ridge, Articles, on Product Reliability

by Greg Hutchins Leave a Comment

Electric Car Hidden Risk

Electric Car Hidden Risk

Guest Post by John Ayers (first posted on CERM ® RISK INSIGHTS – reposted here with permission)

Fifty years ago, having your own car was a sign of adulthood and your ticket around town. But that is all going to change within the next five to ten years due to rising CO2 levels and a new trend called Transportation as a Service. TaaS sits at the intersection of four technical macro trends. These are:

  1. Autonomous vehicles
  2. Electric vehicles
  3. Connectivity
  4. Sharing economy

These trends are here today and are predicted to grow significantly and quickly over the next five to ten years. It is a positive trend with a lot of positive affects on the country and world.

The risk to this trend is the need for electric power will outstrip the supply. This article presents the case for this risk. [Read more…]

Filed Under: Articles, CERM® Risk Insights, on Risk & Safety

by James Reyes-Picknell Leave a Comment

Do you want a PM program that really works

Do you want a PM program that really works

Do you want a PM program that really works

Reliability Centered Maintenance – Re-engineered (RCM-R®)…

… is the world’s leading method for identifying maintenance and other activities required to sustain reliable performance of physical assets. Previously I discussed the various maintenance approaches you can use. This method (RCM-R®) is a structured approach to making those choices. If you want a proactive maintenance program that really works, then Reliability Centered Maintenance is the most thorough approach you can take to get there.Since the 1970’s RCM (generic) has been responsible for huge improvements in airline flight safety – crash rates today are 1 / 120th of what they were before RCM, and the costs of aircraft maintenance programs are way down. We are all comfortable flying in safety. That would not be the case had RCM not come along. [Read more…]

Filed Under: Articles, Conscious Asset, on Maintenance Reliability

by Carl S. Carlson Leave a Comment

FMEA and Robust Design

FMEA and Robust Design

One of the most important concepts in designing for reliability is robust design. This article is a high-level overview of robust design and its relationship to FMEA.

“For the robust, an error is information.” Nassim Nicholas Taleb

[Read more…]

Filed Under: Articles, Inside FMEA, on Tools & Techniques Tagged With: Robust Design

by Nancy Regan Leave a Comment

How Gargoyles Helped Expose a Big Misconception about What Failure Modes to Include in an RCM Analysis

How Gargoyles Helped Expose a Big Misconception about What Failure Modes to Include in an RCM Analysis

It is often wrongly believe that ALL Failure Modes should be included in an RCM analysis. RCM gives us four specific criteria that dictate what Failure Modes should be in included in a properly executed RCM analysis. They are… [Read more…]

Filed Under: Articles, Everyday RCM, on Maintenance Reliability

by Fred Schenkelberg Leave a Comment

Sample Size for Hypothesis Testing of μ

Sample Size for Hypothesis Testing of μ

A common question when setting up a hypothesis test is concerning sample size. An example, might be: How many samples do we need to measure to determine the new process is better than the old one on average?

While this seems like a simple question, we need a bit of information before we can do the calculations. I’ve also found that the initial calculation is nearly always initiated a conversation concerning the balance of sample risks, the ability to detect a change of a certain size and the constraints concerning the number of samples. [Read more…]

Filed Under: Articles, CRE Preparation Notes, Probability and Statistics for Reliability

by Robert (Bob) J. Latino 1 Comment

‘De-Flate Gate’ & RCA

‘De-Flate Gate’ & RCA

[Editor: originally posted Jan 23, 2015]

For those that are football enthusiasts and looking forward to the upcoming Superbowl, we are intrigued by the recent scandal in the NFL. The scandal involves the allegation that somehow the New England Patriots’ footballs used in the game against the Colts last week, were deflated and did not meet the minimum PSI requirements of the NFL to be ‘legal’ for game use. The allegation involves the possible tampering of the NE footballs to attain that ‘deflated’ state. Conceivably this would make it more desirable to throw and catch in the conditions of the game. [Read more…]

Filed Under: Articles, on Maintenance Reliability, The RCA

by Fred Schenkelberg Leave a Comment

The Value of a Great Question

The Value of a Great Question

Some time ago, earlier in my career, I worked for a wonderful boss. She would stop by my office on occasion and ask ‘what’s new?’ or “how’s it going?’ Just a check-in. I often let her know about the current vexing problem I was struggling with at the moment.

The funny thing is she never directly solve the problem for me. She certainly could have. Instead, she would ask a couple of questions that always helped me to find the solution. This happened with problems concerning dealing with a difficult person, strange material properties, motivating change within a group, or finding someone that could design and run a computational fluid dynamic model for me.

It was her questions the helped. She did this in meetings, in presentations, and when she swung by my office for a chat. [Read more…]

Filed Under: Articles, Musings on Reliability and Maintenance Topics, on Product Reliability

by James Kovacevic Leave a Comment

Establishing Fixed Time Maintenance Intervals

How to Select The Optimum Fixed Time Maintenance Intervals

Think about your maintenance program. How often are your PMs scheduled?  How were those frequencies established?   If you are in the majority, the chances are that the frequencies were either established from the OEM manual, or by someone in the department without data.

Establishing the correct frequency of maintenance activities is critical to the success of any maintenance program.   Too infrequently and the organization is subjected to failures, resulting in poor operational performance.  Too frequently, and the organization is subjected to excess planned downtime and an increased probability of maintenance induced failures.  So how do you establish the correct maintenance frequencies for your organization?   There are three different approached to use, based on the type of maintenance being performed;

  • Time-Based Maintenance
  • On-Condition Maintenance
  • Failure Finding Maintenance

This article will focus on Time Based Maintenance Tasks.

Time-Based Maintenance Tasks

“The frequency of a scheduled task is governed by the age at which the item of or component shows a rapid increase in the conditional probability of failure” (RCM2).  When establishing frequencies for Time Based Maintenance, it is required that the life be identified for the component based on data.

With time-based failures, a safe life and useful life exists.  The safe life is when no failures occur before that date or time.  Unless the failure consequence is environmental, or safety related, the safe life would not normally be used.   The useful life (economic life limit), is when the cost of consequences of a failure starts to exceed the cost of the time-based maintenance activity.   There is a trade-off at this point between the potential lost production and the cost of planned downtime, labour, and materials.

So how is the safe life or useful life established?  It is established using failure data and history.  This history can be reviewed using a Weibull Analysis, Mean Cumulative Failure Analysis or even a Crow-AMSAA Analysis to statistically determine the life of the component.   Once that life is determined using a statistical analysis, the optimum cost effective frequency must be established.

Establishing the Optimum Economic Frequency

This formula is used to establish the economic life of the component, balancing the cost of the downtime vs. the cost of the replacement.

 

 

Where;

  • CT= The total cost per unit of time
  • Cf= The cost of a failure
  • CP= The cost of the PM
  • T = The time between PM activities

The formula will provide the total cost based on the maintenance frequency. Since the calculation can be time-consuming, Dodson developed a table which can be used if;

  • The time to fail follows a Weibull Distribution
  • PM is performed on an item at time T, at the cost of CP
  • If the item fails before time = T, a failure cost of Cf is incurred
  • Each time a PM is performed, the item is returned to its initial state “as good as new”

Therefore when using the table, use formula; T=mѲ+δ.  Where;

  • m is a function of the ratio of the failure cost to PM cost and the value of the shape
  • Ѳ is the scale parameter of the Weibull distribution
  • δ is the location parameter of the Weibull distribution

In the example below, you can see how the table can be used with the formula;

The cost for a PM activity $60.  The cost of a failure for the same item is $1800.  Given the Weibull parameter of B=3.0, O=120 days, and δ =3 how often should the PM be performed?

  • Cf/ CP = x
  • 1800/60 = 30

The table value of m given a shape parameter B of 3.0 is 0.258.  Therefore;

  • T=mѲ+δ
  • T = (0.258)(120)+3 = 33.96
  • T = 34 days for each PM

As you can see, determining the frequency of Fixed Time Maintenance tasks is not as simple as picking a number out of a manual or based on intuition.  Armed with this information, a cost effective PM frequency based on data can be developed for your Fixed Time Maintenance tasks.   This will ensure the right maintenance is done at the right time, driving your plant performance further.

Does you Fixed Time Maintenance Tasks have this level of rigor behind them?  Why, not?  After all, your plant performance (operational and financial) depends on it.   Stay tuned for next week’s post on establishing frequencies for On-Condition tasks.

Remember, to find success; you must first solve the problem, then achieve the implementation of the solution, and finally sustain winning results.

I’m James Kovacevic
Eruditio, LLC
Where Education Meets Application
Follow @EruditioLLC

References;

  • RCM2 by John Moubray
  • CRE Primer – Quality Council of Indiana

 

Filed Under: Articles, Maintenance and Reliability, on Maintenance Reliability

by Greg Hutchins Leave a Comment

Project Communications

Project Communications

Guest Post by Malcolm Peart (first posted on CERM ® RISK INSIGHTS – reposted here with permission)

George Bernhard Shaw once said, and it’s now been written down and put on posters and the like: “The problem with communication is the illusion that it has taken place”. 

In this ‘Information Age’ we have access to, receive, generate, and send more information than ever before.  People can suffer from infoxication as a consequence of ‘information overload’ and decision making has, we are told, become more difficult as a consequence.  [Read more…]

Filed Under: Articles, CERM® Risk Insights, on Risk & Safety

by Ray Harkins 1 Comment

Risk-Based Analysis of Random Variables

Risk-Based Analysis of Random Variables

Also by co-author: Mark Fiedeldey

Business today is more competitive than ever. As a result, successful business leaders often need to make quick decisions with less than complete data. The wrong decision could result in significant losses, layoffs, or worse. This is where quality professionals and other data-savvy specialists can offer some assistance: by making the best analysis possible given the available data. [Read more…]

Filed Under: Articles, on Tools & Techniques, The Manufacturing Academy

by James Reyes-Picknell 2 Comments

The Basics of PM Programs

The Basics of PM Programs

The Basics of PM Programs

Do you replace your car headlights at regular intervals of six months? Do you wait to replace your tires until they wear through? Do you check your car engine oil with some sort of oil analysis before replacing it? Each component and system in your car has a function that is prone to failure. Each of those has consequences – some with little importance and others with great importance. [Read more…]

Filed Under: Articles, Conscious Asset, on Maintenance Reliability

by Fred Schenkelberg Leave a Comment

The Power of a Sample

The Power of a Sample

We use a sample to estimate a parameter from a population. Sometimes the sample just doesn’t have the ability to discern a change when it actually occurs.

In hypothesis testing, we establish a null and alternative hypothesis. We are setting up an experiment to determine if there is sufficient evidence that a process has changed in some way. The Type II Error, $-\beta-$ is a measure of the probability of not concluding the alternative hypothesis is true when in reality it is true.

The power, $-1-\beta-$, reflects the ability of the sample to correctly lead us to the conclusion that an actual change has occurred when in reality it actually has. [Read more…]

Filed Under: Articles, CRE Preparation Notes, Probability and Statistics for Reliability

by Nancy Regan Leave a Comment

Taking Care of Our Equipment Requires More than just Proactive Maintenance

Taking Care of Our Equipment Requires More than just Proactive Maintenance

When it comes to Physical Asset Management, we have to think beyond maintenance and remember that there are a lot of other things we have to consider… [Read more…]

Filed Under: Articles, Everyday RCM, on Maintenance Reliability

by Bryan Christiansen Leave a Comment

5 Ways To Reduce Your Overall Maintenance Workload

5 Ways To Reduce Your Overall Maintenance Workload

Maintenance of different equipment within a facility remains a core enabler of improved productivity and efficiency of plant processes. Poor maintenance practices lead to machine downtime, increased operational costs, and increased maintenance workloads.

Reducing maintenance workload can’t be done overnight, but it is a goal worth pursuing. Less maintenance work performed (without an increase in reactive maintenance work) means less resources spent – fewer spare parts used, less overtime work, and improved employee satisfaction that can actually increase the average quality of performed maintenance work.

[Read more…]

Filed Under: Articles, CMMS and Reliability, on Maintenance Reliability Tagged With: CMMS, maintenance scheduling, Predictive Maintenance

  • « Previous Page
  • 1
  • …
  • 69
  • 70
  • 71
  • 72
  • 73
  • …
  • 215
  • Next Page »

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy