Is it Possible to Pass HALT?
Abstract
Kirk and Fred answer a common question concerning HALT.
ᐅ Play Episode
Your Reliability Engineering Professional Development Site
Author of Accelerated Reliability articles and Next Generation HALT and HASS, plus, co-host on Speaking of Reliability.
This author's archive lists contributions of articles and episodes.
Kirk and Fred answer a common question concerning HALT.
ᐅ Play Episode
MTBF for electronics life entitlement measurements is a meaningless term. It says nothing about the distribution of failures or the cause of failures and is only valid for a constant failure rate, which almost never occurs in the real world. It is a term that should be eliminated along with reliability predictions of electronics systems with no moving parts. [Read more…]
Kirk Gray, Accelerated Reliability Solutions, L.L.C.
Many reliability engineers have discovered HALT will quickly find the weaknesses and reliability risks in electronic and electromechanical systems from the capability of thermal cycling and vibration to create rapid mechanical fatigue in electronic assemblies. Assemblies that have latent defects such as cold solder or cracked solder joints, loose connectors or mechanical fasteners, or component package defects can be brought to a detectable, or patent, condition by which we can observe and potentially improve the robustness of an electronics system. [Read more…]
Kirk Gray, Accelerated Reliability Solutions L.L.C.
Traditional electronics reliability engineering began during the period of infancy in solid state electronic hardware. The first comprehensive guide to Failure Prediction Methodology (FPM) premiered in 1956 with the publication of the RCA release TR-1100: “Reliability Stress Analysis for Electronic Equipment” presented models for computing rates of component failures. “RADC Reliability Notebook” emerged later in 1959, followed by the publication of a military handbook know as that addressed reliability prediction known as Military Handbook for [Read more…]
Kirk Gray, Accelerated Reliability Solutions, L.L.C.
In all aspects of engineering we only make improvements and innovation in technology by building on previous knowledge. Yet in the field of reliability engineering (and in particular electronics assemblies and systems), sharing the knowledge about field failures of electronics hardware and the true root causes is extremely limited. Without the ability to share data and teach what we know about the real causes of “un-reliability” in the field, it is more easily understood why the belief in the ability able to model and predict the future of electronics life and MTBF continue to dominate the field of electronics reliability [Read more…]
When we go to an automobile race such as the Indianapolis 500, watching those cars circle the track can get fairly boring. What is secretly unspoken is that everyone observing the race is watching for a race car to find and sometimes exceed a limit, finding a discontinuity. The limit could be how fast he enters a curve before the acceleration forces exceed the tires coefficient of friction, or how close to the racetrack wall, he can be before he contacts it and spins out of control. Using the race analogy, [Read more…]
Most reliability engineers are familiar with the life cycle bathtub curve, the shape of the hazard rate or risks of failure of a electronic product over time. A typical electronic’s life cycle bathtub curve is shown in figure 1. [Read more…]