Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by nomtbf Leave a Comment

How to Avoid Delivering Bad Data

How to Avoid Delivering Bad Data

14781654934_58be162f3b_zHow to Avoid Delivering Bad Data

We gather and report loads of data nearly every day.

Is your data “good data”? Or does it fall into the “bad data” category?

Let’s define the difference between good and bad data. Good data is accurate, timely, and useful. Bad data is not. It may be time to look at each set of data you are collecting or reviewing and judge if it’s good or not. Then set plans in motion to minimize the presence of bad data in your organization.

Good data is accurate

By this I mean it truly reprints the items or process being measured.

If the mass is 2.3 kilograms, then the measurement should be pretty close to 2.3 kg. This is a basic assumption we make when reviewing measurements, yet when was the last time you checked? Use a different measurement method, possible a known accurate method to check.

Measurement system analysis includes a few steps to determine if the gage making a measurement is true or not. Calibration may come to mind, as it is a step to verify the gage readings are reflecting standard measures. A meter is a meter is a meter across the many ways we can measure distance.

It also includes checking the common sources of measurement error:

  • Repeatability
  • Reproducibility
  • Bias
  • Linearity
  • Stability

You may also want to understand the resolution or discrimination of the measurement process.

If these terms and how one goes about checking for accuracy, it may be time to learn a little about MSA.

Good data is timely

If the experiment results are available a week after the decision to launch the product, it will not be considered in the decision. It is not useful for the decision concerning product launch. If the data was available it may alter the decision. Late, we will not know.

Timely means it is in time for someone or some team to make a decision. Ideally, the data is available immediately. When a product fails in the field, we would like to know right away, not two or three month later. If a production line becomes unstable, knowing before another unit of scrap is produced would be timely.

Not all data gathering and reporting is immediate. Some data takes months or an entire year to gather. There are physical constraints in some situation that day the gathering of data. For example is takes on average 13 minutes, 48 seconds, for radio signals to travel from a space probe orbiting Mars to reach Earth [1]. If you are making important measurements on Earth it should be a shorter delay.

The key point here, is the data should be available when it is needed to make decisions.

Good data is useful

Even if the data is accurate and timely is may not be useful. The data could be from a perfect measurement process, yet is measuring something we do not need to know or consider. The data gathered does not help inform us concerning the decision at hand.

For example, if I’m perfectly measuring production throughput, it does not help me understand the causes of the product line downtime. While related to some degrees, instead of the tally of units produced per hour, what we really would find useful is data concerning the number of interruptions to production, plus details on the root cause of each.

Setting up and maintaining the important measurements is difficult as we often shift focus based on the current data. We spot a trend and want to learn more than the current data can provide. The idea is we should not setup and only use a fixed set of data collection processes. Ideally your work to gather data is driven by the need to answer questions.

  • Is the maintenance process improving the equipment operation?
  • Is our manufacturing process stable and capable of creating our product?
  • Will the current product design meet life expectations/requirements?
  • Have we confirmed the new design ‘fixed’ the faults seen in the last prototype?

We have questions and we gather data to allow us to answer questions.

How would you describe the data you will look at today? Good or Bad? And more importantly, do you know if your data is good or bad?

—

Time delay between Mars and Earth, Thomas Ormhston, posted 5/8/2012,  European Space Agency, Mars Express Blog, http://blogs.esa.int/mex/2012/08/05/time-delay-between-mars-and-earth/ accessed 4/29/2016

Filed Under: Articles, NoMTBF

« Descriptive Models of the Design Process
5 Steps to Building a Reliability Culture »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ]

[/popup]

The Accendo Reliablity logo of a sun face in circuit

Please login to have full access.




Lost Password? Click here to have it emailed to you.

Not already a member? It's free and takes only a moment to create an account with your email only.

Join

Your membership brings you all these free resources:

  • Live, monthly reliability webinars & recordings
  • eBooks: Finding Value and Reliability Maturity
  • How To articles & insights
  • Podcasts & additional information within podcast show notes
  • Podcast suggestion box to send us a question or topic for a future episode
  • Course (some with a fee)
  • Largest reliability events calendar
  • Course on a range of topics - coming soon
  • Master reliability classes - coming soon
  • Basic tutorial articles - coming soon
  • With more in the works just for members
Speaking of Reliability podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Dare to Know podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Accendo Reliability Webinar Series podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy