Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by nomtbf Leave a Comment

Considering WIIFT When Reporting Reliability

Considering WIIFT When Reporting Reliability

14762172376_976f51db33_oWIIFT and Reliability Measures

WIIFT is “what’s in it for them”. Similar to what’s in it for me, yet the focus is your consideration of what value are you providing your audience.

As a reliability engineer you collection, analyze and report reliability measures. You report reliability estimates or results. Do you know how your audience is going to use this information?

Consider WIIFT when reporting reliability.

There are many reasons people look at reliability measures. Let’s explore a few WIIFT situations and build your ability to consider WIIFT when preparing and reporting reliability values. Keep in mind that underlying any metric is decisions.

Field Failure Rate Data

When monitoring field data failure rates, the leadership team may consider the allocation of additional resources to improve future field reliability performance. Or the data may suggest a product recall. We monitor to identify actionable situations. We want to reinforce good performance and thwart the impact of poor performance.

What is in it for the person monitoring the failure rate data? Spotting a trend and taking prompt action may save a product line significant revenue. The appropriate resources are assigned to work on product improvement, while other resources focus on other priorities. When the reported failure rate data and the decision making work well, problems are spotted and resolved before the issues become major problems.

The trick is having clear, concise and complete data that allows the identification is trends or abrupt changes in the failure rate. Averaging and reporting MTBF or MTTF tends to obscure this information. The use of Weibull cumulative distribution plots with expected performance indicators may provide sufficient sensitivity for the monitoring task. Help your decision makers make the right decisions.

Effectiveness of Maintenance Program

One way to determine if a maintenance program is working well is to track availability. A possible key performance indicator is the number of unplanned maintenance actions per month. Simply reporting availability may work, yet it is just an average for a time period and lacks clear trending information.

Rather than create a plot of week to week MTBF or Availability values, consider using a mean cumulative function plot. The non-parametric view of the cumulative number of repairs over time immediately makes clear trends related to the equipment and its care.

A plot that bends upward suggests each repair leaves the equipment in a little worse shape, whereas a flattening out bend suggest the equipment is running longer between maintenance actions. See the article by Wayne Nelson for more information on this visual technique to help our team understand and make better decisions concerning equipment maintenance.

The WIIFT may concern planning, warehouse costs, and maintenance budgets. Making decisions to keep great maintenance practices versus move to a reaction to failure stance relies on having a grasp of the trends. Help decision makers get the best running equipment that permits consistency and predictability of equipment throughput.

Comparing Component Reliability from Two Vendors

Let’s say we have two hard drive models in our possible solution. Which is a better drive, reliability speaking? We can compare data sheets, compare the reported MTBF values, or we can provide a bit more clarity.

This may take some work to either gather or create (testing) the time to failure data. How long and under what conditions did the drives operate before failure. Even better is you also know how many drives did not failure over what period. Plus, having detailed failure analysis of each failure would help, too.

In short, let’s assume the drives failure for a dominant failure mechanisms related to how your product and customers will use the drives. A Weibull (or appropriate distribution or non-parametric) plot of time to failure data  allows your team to visualize the data and the trends over time. Placing both sets of data on the same plot enables the comparisons required to make a good decisions.

Condensing the data to a single value, like MTBF, hides essential information. Knowing if the failures occur mostly in the first month or last month has major impact of vendor selection. Knowing the expected failure rate over time enables the team to consider sparing, cooling, redesign, and other factors that may minimize the eventual failure rate. Selection based on a single and often value MTBF value for each drive is fraught with ambiguity.

The WIIFT is making the right choice. If the decision makes care about meeting business objective and keeping customer happy, then selecting the right vendor is key.

Summary

In each case get time to failure data and do not use a grand average value, like MTBF. Plot the data. Parametric or non-parametric, plot the data to “see” what is going on. Help you decision makes make the right decisions with clear, concise and complete information. Help them get WIIFT.

Filed Under: Articles, NoMTBF Tagged With: measure, metrics

« Solving a Reliability Optimization Example
Are You Tracking and Reporting Field Failures Well? »

Comments

  1. Charles Dibsdale says

    March 4, 2016 at 11:59 AM

    Yes, Years ago I helped build a FRACAS system and used a Cusum function to show rate of change of failure events – The inflexions in the trends are so much more informative.
    Fitting these trends on log-log graphs help us choose distributions.

    Reply
    • Fred Schenkelberg says

      March 4, 2016 at 12:06 PM

      thanks Charles – very true it is the bumps, rises, spikes, etc that matter the most.

      Also, btw, sorry the note is late this week, the scheduled post didn’t post…

      hope to get back on schedule next week.

      Cheers,

      Fred

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ]

[/popup]

The Accendo Reliablity logo of a sun face in circuit

Please login to have full access.




Lost Password? Click here to have it emailed to you.

Not already a member? It's free and takes only a moment to create an account with your email only.

Join

Your membership brings you all these free resources:

  • Live, monthly reliability webinars & recordings
  • eBooks: Finding Value and Reliability Maturity
  • How To articles & insights
  • Podcasts & additional information within podcast show notes
  • Podcast suggestion box to send us a question or topic for a future episode
  • Course (some with a fee)
  • Largest reliability events calendar
  • Course on a range of topics - coming soon
  • Master reliability classes - coming soon
  • Basic tutorial articles - coming soon
  • With more in the works just for members
Speaking of Reliability podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Dare to Know podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Accendo Reliability Webinar Series podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy