Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by Fred Schenkelberg 5 Comments

Welcome

Welcome to the ASQ Certified Reliability Engineer (CRE) exam preparation course.

Start Course Today

We will be stepping through the CRE Body of Knowledge as you refresh your knowledge, reinforce what you already know, and brush up on a few rusty areas.

 

  • mp4 Welcome video Download
  • pdf Welcome slides Download
  • mp3 Welcome audio Download

Additional References

CRE Primer from the Quality Council of Indiana

ASQ Certified Reliability Engineer description

ASQ CRE Body of Knowledge

There are many reasons to sit for the CRE certification, and what ever the reason, let’s work together so you can successfully achieve this career milestone. It’s a tough test and covers a broad body of knowledge, yet with a little support and hard work you can do it.

Primary Course Reference

The course reading and study material is primarily based in the CRE Primer from the Quality Council of Indiana. You can order your copy directly from their site. It makes a perfect reference for use during the exam, plus a handy goto reference for your day to day reliability engineering work, too.

 

Start Course Today

View Next

About Fred Schenkelberg

I am the reliability expert at FMS Reliability, a reliability engineering and management consulting firm I founded in 2004. I left Hewlett Packard (HP)’s Reliability Team, where I helped create a culture of reliability across the corporation, to assist other organizations.

Comments

  1. JOSEMARIA ECENARRO LOPEZ says

    January 9, 2018 at 3:13 PM

    Hello, I´m engineering from spain and I’m interesting in your course on line CRE, because I want to be prepare in reliabilty subject to implement the knowledge in my company but I have some question about it:
    1) How long is the course?
    2) What it is the garanty to pay the course and have the acces to study it on line?
    3) How many hours I have to study? Can I study at my pace?
    4) How I confirm that the conexion on line it is correct?
    5) Can I do a trial of the conection before to pay it?
    6) Can I have any problem to stay in Spain?

    Thank you for your attention

    Regards

    JME

    Reply
    • Fred Schenkelberg says

      January 9, 2018 at 3:38 PM

      Hi Josemaria,

      All good questions, let me try to answer them for you.

      1) the course is based on a 32 hour course I teach for my local ASQ section – so roughly 32 hours of lectures, the add sample exam problems (about 350, I believe in the current course with more on the way), and time to read the supporting material/tutorials, the course may require from 40 to 80 hours to complete.

      2. The payment is via Stripe (most major credit cards accepted) or PayPal – the course is available online with lectures available to stream online via your browser or you may download the audio/slides/mp4 movies if you so desire.

      3. You have as many hours, days, weeks or months as you want to study – totally at your own pace. I have found that allotting at least 8 weeks and taking the time to work sample problems and do the extra reading helps you master the material. Also, you pay once and always have access to the course – including updates.

      Note: I am in the process of updating the course to include the new elements of the 2018 BOK, and plan to keep the removed elements as bonus material.

      4. Visit https://lucas-accendo-site-speed.sprod01.rmkr.net/cre-preparation/course-introduction/welcome/ (this page) and on the right sidebar click on Course Introduction. There you can view the Introduction lesson, A CRE Sample Quiz, a Math Quiz, and the previous body of knowledge. You can play the video’s and try the downloads to make sure everything is working.

      5. Yes, try the sample and welcome/intro lessons to make sure your connection works.

      6. No problems with staying in Spain, the entire course is online.

      Finally, this course also comes with my ongoing support. I created the course and have taught CRE and CQE prep courses for many years. I hear to help you by answering any of your questions, available to discuss topics and recommend resources, study habits, etc.

      Be sure to also, if you haven’t seen it, the series of short tutorials I write under CRE preparation Notes.

      I’m here to help you prepare for the CRE exam and/or become a better reliability professional.

      Cheers,

      Fred

      Reply
  2. JOSEMARIA ECENARRO LOPEZ says

    January 10, 2018 at 12:48 PM

    thank you very much for your kindly answer

    Reply
  3. Jay Eppinga says

    August 20, 2018 at 5:37 AM

    Hi Fred

    Is this course obsolete? The reason(s) I am asking is that I still haven’t found a payment page and that the QCI links are 404 (indicative of the earlier BOK).

    In case it is obsolete, are you intent on setting up a similar on-demand course for the new BOK? Also, what is the cost of the new course?

    I have another question which I’ll follow up with later.

    Thank you,
    – Jay

    Reply
    • Fred Schenkelberg says

      August 22, 2018 at 9:25 AM

      Hi Jay,

      Kind of obsolete as it is structured around the previous body of knowledge. The vast majority of the content is the same for the new body of knowledge, yet I have the course primarily offline for new students as I need to update the organization to match the new body of knowledge. There a few new lectures to add mostly around risk management, and few that will become bonus material as few topics have dropped from the body of knowledge.

      I’m working on it yet it is taking time and I expect to have it updated this year… although that is a maybe at this point.

      Cheers,

      Fred
      PS: thanks for the note on the link to the QCI links – that I can update quickly.

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • CRE Preparation Course
    • Course Introduction
      • Welcome
      • Introduction
      • Thank You for Your Interest in the Course
      • Exam Day
      • Preparation Approach
      • Discussion Forums Introduction
      • CRE Sample Quiz
      • Terms Glossary
      • Math Quiz
      • Body of Knowledge 2009 version
      • Body of Knowledge 2018 version
    • Reliability Management
      • Reliability Management Introduction
    • I. A. Strategic Management
      • Strategic Management Introduction
      • I. A. 1. Benefits of Reliability Engineering
      • I. A. 2. Interrelationship of Safety, Quality, and Reliability
      • I. A. 3. Role of the Reliability Function
      • I. A. 4. Product and Process Development
      • I. A. 5. Failure Consequences and Liability Management
      • I. A. 6. Warranty Management
      • I. A. 7. Customer Needs Assessment
      • I. A. 8. Supplier Reliability
      • I. A. Strategic Management Quiz
      • I. A. Bonus — Building Influence
    • I. B. Reliability Program Management
      • Reliability Program Management Introduction
      • I. B. 1. Terminology
      • I. B. 2. Elements of a Reliability Program
      • I. B. 3. Types of Risk
      • I. B. 4. Product Lifecycle Engineering
      • I. B. 5. Design Evaluation
      • I. B. 6. Systems Engineering and Integration
      • I. B. Reliability Program Management Quiz
    • I. C. Ethics, Safety, and Liability
      • Ethics, Safety, and Liability Introduction
      • I. C. 1. Ethical Issues
      • I. C. 2. Roles and Responsibilities
      • I. C. 3. System Safety
      • I. C. Ethics, Safety, and Liability Quiz
    • II. Probability and Statistics for Reliability
      • Probability and Statistics for Reliability Introduction
    • II. A. Basic Concepts
      • Basic Concepts Introduction
      • II. A. I. Statistical Terms
        • II. A. I. a. Basic Statistical Terms
        • II. A. I. b. Measures of Central Tendency
        • II. A. I. c. Central Limit Theorem
        • II. A. I. d. Measures of Dispersion
        • II. A. 1. e. COV and a Couple of Laws
      • II. A. 2. Basic Probability Concepts
        • II. A. 2. a. Probability
        • II. A. 2. b. Laws and Counting
        • II. A. 2. c. Expectation
      • II. A. 3. Discrete and Continuous Probability Distributions
        • II. A. 3. a. The Four Functions
        • II. A. 3. b. Continuous Distributions
        • II. A. 3. c. Discrete Distributions
        • II. A. 3. d. Bathtub Curve
      • II. A. 4. Poisson Process Models
        • Poisson Process Models Introduction
        • II. A. 4. a. Homogeneous Poisson Process
        • II. A. 4. b. Repair System Terminology
        • II. A. 4. c. Non-Homogenous Poisson Process
        • II. A. 4. d. Mann Reverse Arrangement Test
        • II. A. 4. e. Laplace’s Trend Test
        • II. A. 4. f. Fisher’s Composite Test
      • II. A. 5. Non-Parametric Statistical Methods
        • II. A. 5. a. The Approach
        • II. A. 5. b. Ranking
        • II. A. 5. c. Reliability and Comparisons
        • Non-Parametric Statistical Methods Introduction
      • II. A. 6. Sample Size Determination
        • II. A. 6. Sample Size Determination
      • II. A. 7. Statistical Process Control and Process Capability
        • II. A. 7. a. Control Charts Introduction
        • II. A. 7. b. X-bar and R charts
        • II. A. 7. c. Selecting Control Charts
        • II. A. 7. d. Individual and Moving Range Charts
        • II. A. 7. e. Attribute Charts
        • II. A. 7. f. The Analysis
        • II. A. 7. g. Process Capability
        • II. A. 7. h. Standard Normal and z-values
        • II. A. 7. i. Capability and Charts
        • II. A. 7. j. Pre-Control Charts
        • Statistical Process Control and Process Capability Introduction
      • II. A. Basic Concepts Quiz
    • II. B. Statistical Inference
      • Statistical Inference Introduction
      • II. B. 1. Point Estimates of Parameters
      • II. B. 2. a. Statistical Intervals – Point Estimates
      • II. B. 2. b. Statistical Intervals – MTBF Estimates
      • II. B. 3. a. Hypothesis Testing – The Process
      • II. B. 3. b. Hypothesis Testing – Means
      • II. B. 3. c. Hypothesis Testing – Variance
      • II. B. 3. d. Hypothesis Testing – Comparisons
      • II. B. Statistical Inference Quiz
    • III. Reliability in Design and Development
      • Reliability in Design and Development Introduction
    • III. A. Reliability Design Techniques
      • Reliability Design Techniques Introduction
      • III. A. 1. Environmental and Use Factors
      • III. A. 2. Stress-Strength Analysis
      • III. A. 3. FMEA and FMECA
      • III. A. 4. Common Mode Failure Analysis
      • III. A. 5. Fault and Success Tree Analysis
      • III. A. 6. Tolerance and Worst-Case Analysis
    • III. A. 7. Design of Experiments
      • Design of Experiments Introduction
      • III. A. 7. a. How We Experiment
      • III. A. 7. b. Differences and Approaches
      • III. A. 7. c. Language of DOE
      • III. A. 7. d. Only the Right Experiments
      • III. A. 7. e. Steps to Accomplish
      • III. A. 7. f. Dealing with Measurements
      • III. A. 7. g. Interactions and Confounding
      • III. A. 7. h. Adjusting the Design
      • III. A. 7. i. Classical DOE
      • III. A. 7. j. Various Designs
      • III. A. 7. k. A Simple Taguchi Example
      • III. A. 7. l. Robust Design
    • III. A. more Reliability Design Techniques
      • III. A. 8. Fault Tolerance
      • III. A. 9. Reliability Optimization
      • III. A. 10. Human Factors
      • III. A. 11. Design for X – DFX
      • III. A. 12. Reliability Apportionment or Allocation Techniques
      • III. A. Reliability Design Techniques Quiz
    • III. B. Parts and Systems Management
      • Parts and Systems Management Introduction
      • III. B. 1. a. Selection, Standardization, and Reuse – Parts
      • III. B. 1. b. Selection, Standardization, and Reuse – Software
      • III. B. 2. Derating Methods and Principles
      • III. B. 3. Parts Obsolescence Management
      • III. B. 4. Establishing Specifications
      • III. B. Parts and Systems Management Quiz
    • IV. Reliability Modeling and Predictions
      • Reliability Modeling and Predictions Introduction
    • IV. A. Reliability Modeling
      • Reliability Modeling Introduction
      • IV. A. 1. Sources and Uses of Reliability Data
      • IV. A. 2. a. Reliability Block Diagrams and Models – Series Systems
      • IV. A. 2. b. Reliability Block Diagrams and Models – Parallel Systems
      • IV. A. 2. c. Reliability Block Diagrams and Models – Redundancy
      • IV. A. 2. d. Reliability Block Diagrams and Models – Complex
      • IV. A. 2. e. Reliability Block Diagrams and Models – Keynote
      • IV. A. 3. Physics of Failure Models
      • IV. A. 4. a. Simulation Techniques – Markov Models
      • IV. A. 4. b. Simulation Techniques – Monte Carlo
      • IV. A. 5. Dynamic Reliability
      • IV. A. Reliability Modeling quiz
    • IV. B. Reliability Predictions
      • Reliability Predictions Introduction
      • IV. B. 1. Parts Count Predictions and Parts Stress Analysis
      • IV. B. 2. a. Reliability Prediction Models – Considerations
      • IV. B. 2. b. Reliability Prediction Models – Uncertainty
      • IV. B. 2. c. Reliability Prediction Models – Tolerance Intervals
      • IV. B. Reliability Predictions quiz
    • V. Reliability Testing
      • Reliability Testing Introduction
    • V. A. Reliability Testing Planning
      • Reliability Testing Planning Introduction
      • V. A. 1. a. Reliability Test Strategies – Types of Testing
      • V. A. 1. b. Reliability Test Strategies – Human Factors Testing
      • V. A. 2. Test Environment
      • V. A. Reliability Test Planning quiz
    • V. B. Testing During Development
      • Testing During Development Introduction
      • V. B. 1. Accelerated Life Tests
      • V. B. Bonus – A Few Models
      • V. B. 2. Discovery Testing
      • V. B. 3. Reliability Growth Testing
      • V. B. 4. Software Testing
      • V. B. Testing During Development quiz
    • V. C. Product Testing
      • Product Testing Introduction
      • V. C. 1. a. Qualification Demonstration Testing – PRST
      • V. C. 1. b. Qualification Demonstration Testing – Success Testing
      • V. C. 2. Product Reliability Acceptance Testing – PRAT
      • V. C. 3. Ongoing Reliability Testing
      • V. C. 4. Stress Screening
      • V. C. 5. Attribute Testing
      • V. C. 6. Degradation Testing
      • V. C. Bonus – Acceleration Factors
      • V. C. Product Testing quiz
    • VI. Maintainability and Availability
      • Maintainability and Availability Introduction
    • VI. A. Management Strategies
      • Management Strategies Introduction
      • VI. A. 1. a. Planning
      • VI. A. 1. b. Planning – System Effectiveness
      • VI. A. 1. c. Planning – Reliability Time
      • VI. A. 2. a. Maintenance Strategies – RCM
      • VI. A. 2. b. Maintenance Strategies – TPM
      • VI. A. 2. c. Maintenance Strategies – Allocation
      • VI. A. 3. Availability Tradeoffs
      • VI. A. Management Strategies quiz
    • VI. B. Maintenance and Testing Analysis
      • Maintenance and Testing Analysis Introduction
      • VI. B. 1. Preventative Maintenance Analysis
      • VI. B. 2. Corrective Maintenance Analysis
      • VI. B. 3. Non-Destructive Evaluation
      • VI. B. 4. Testability
      • VI. B. 5. Spare Parts Analysis
      • VI. B. Maintenance and Testing Analysis quiz
    • VII. Data Collection and Use
      • Data Collection and Use Introduction
    • VII. A. Data Collection
      • Data Collection Introduction
      • VII. A. 1. a. Types of Data
      • VII. A. 1. b. Types of Data – Censored Data
      • VII. A. 2. Collection Methods
      • VII. A. 3. Data Management
      • VII. A. Data Collection quiz
    • VII. B. Data Use
      • Data Use Introduction
      • VII. B. 1. Data Summary and Reporting
      • VII. B. 2. Preventive and Corrective Actions
      • VII. B. 3. Measures of Effectiveness
      • VII. B. Data Use quiz
    • VII. C. Failure Analysis and Correction
      • Failure Analysis and Correction Introduction
      • VII. C. 1. Failure Analysis Methods
      • VII. C. 2. Failure Reporting, Analysis, and Corrective Action System
      • Exam Day Bonus
      • VII. C. Failure Analysis and Correction quiz

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy