Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by nomtbf Leave a Comment

Determine MTBF Given a Weibull Distribution

Determine MTBF Given a Weibull Distribution

Determine MTBF Given a Weibull Distribution

Gary A. K. Reliable & regal 1000-block Nelson.
Gary A. K.
Reliable & regal 1000-block Nelson.

First off, not sure why anyone would want to do this, yet one of the issues I’ve heard concerning abandoning the use of MTBF is client ask for MTBF. If they will not accept reliability probabilities at specific durations, and insist on using MTBF, you probably should provide a value to them.

Let’s say you have a Weibull distribution model that described the time to failure distribution of your product. You’ve done the testing, modeling, and many field data analysis and know for the requestor’s application this is the best estimate of reliability performance. You can, quite easily calculate the MTBF value.

As you know, if theβ parameter is equal to one then the characteristic life, η, is equal to MTBF. If β is less than or greater than one, then use the following formula to determine the mean value, MTBF, for the distribution.

$latex \displaystyle&s=4 \mu =\eta \Gamma \left( 1+\frac{1}{\beta } \right)$

You’ll need the Gamma function and the Weibull parameters. The further β is from one, the bigger the difference between η and MTBF.

You can find a little more information and background at the article Calculate the Mean and Variance on the accendoreliability.com site under the CRE Preparation article series.

Filed Under: Articles, NoMTBF

« The Exponential Distribution
The Poisson Distribution »

Comments

  1. Nicola says

    October 4, 2016 at 7:40 AM

    Hi,

    I’m doing my best to better understand how to move away from the misunderstandings caused by using MTTF and/or MTBF when generating/testing specifications in new product development. However, I find it confusing that, in a previous post about the use of MTBF in a fan data sheet, you say that MTBF assumes a constant failure rate, whilst above you generalise its calculation to any Weibull distribution. Does the definition/use of MTBF only apply to beta=1, or is that again part of the whole confusion?

    Reply
    • Fred Schenkelberg says

      October 4, 2016 at 10:41 AM

      Hi Nicola,

      Yes, it is part of the confusion. One can calculate MTBF from any set of data. The failure pattern might be increasing, decreasing or whatever, and you can tally total time and divide by the number of failures.

      The hard part is when only given MTBF to represent reliability; you do not have any information on the changing nature of the failure rate over time. Thus must are left to assume a constant hazard rate, which, is rarely if ever true.

      I find MTBF oversimplifies failure data to the point of making the summary without value.

      Cheers,

      Fred

      Reply
      • Nicola says

        October 5, 2016 at 2:08 AM

        Thanks a lot!
        There is much confusion out there and your work is helping me a lot to shed some light on the whole reliability and MTTF testing/analysis affair.
        Cheers

        Reply
  2. Fred Schenkelberg says

    October 5, 2016 at 3:33 PM

    Glad to help, care to share any examples?

    Cheers,

    Fred

    Reply
    • Nicola says

      October 13, 2016 at 5:28 AM

      Sorry for the late reply.
      I haven’t got a lot of examples to share, it’s mostly a story of a hard to demonstrate reliability goal. I am working on an electro-mechanical device and I reviewed some old reliability testing. Since the device is quite expensive and requires almost continuous attention to run, the shortcut of assuming beta=1 was taken in the past to reduce the no. of samples and test hours. Subsequently someone realised that and fit a Weibull distribution, although over only 1 failure and 9 right censored data… Again, an unreliable result.
      My approach is now to use competitive failure modes and analyse reliability of the critical components of the device independently, using a semi-quantitative assessment as we cannot do a comprehensive statistical analysis.

      Cheers

      Reply
      • Fred Schenkelberg says

        October 14, 2016 at 1:01 PM

        Thanks Nicola for the example. Seems you are on a good path to sort out the necessary information to understand the system’s reliability. Cheers, Fred

        Reply
  3. Rizal says

    May 30, 2018 at 1:29 PM

    Hi sir, i am rizal, can you tell me what the different of mtbf and mttf ? i have task in my lecture to analize reliabilty of boiler power plant. I am confused about it. What must i choose ? How can i calculate of mtbf and mttf ? Can you help me solve my problems ? Thanks before

    Reply
    • Fred Schenkelberg says

      June 3, 2018 at 9:05 PM

      Hi Rizal,

      Seems you have some homework and I’m not going to solve homework problems for you – that is for you to sort out and learn from.

      Yet I did write an article on How to Calculate MTTF, which you can find at http://nomtbf.com/2016/06/how-calculate-mtbf/

      Another you may want to bring to the attention of your instructor is http://nomtbf.com/2017/07/reliabilty-become-confused-mtbf/

      Cheers,

      Fred

      Reply
  4. mostafa says

    December 2, 2018 at 4:37 PM

    Hi,
    Your formula is about MTTF not MTBF ? or I dont get something ? thank you

    Reply
    • Fred Schenkelberg says

      December 3, 2018 at 1:30 PM

      Hi Mostafa,

      It could be used for either, yet your right in this circumstance calling it MTTF would make more sense.

      Cheers,

      Fred

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ]

[/popup]

The Accendo Reliablity logo of a sun face in circuit

Please login to have full access.




Lost Password? Click here to have it emailed to you.

Not already a member? It's free and takes only a moment to create an account with your email only.

Join

Your membership brings you all these free resources:

  • Live, monthly reliability webinars & recordings
  • eBooks: Finding Value and Reliability Maturity
  • How To articles & insights
  • Podcasts & additional information within podcast show notes
  • Podcast suggestion box to send us a question or topic for a future episode
  • Course (some with a fee)
  • Largest reliability events calendar
  • Course on a range of topics - coming soon
  • Master reliability classes - coming soon
  • Basic tutorial articles - coming soon
  • With more in the works just for members
Speaking of Reliability podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Dare to Know podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Accendo Reliability Webinar Series podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy