Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by Fred Schenkelberg 4 Comments

Determine Success Testing Sample Size

Determine Success Testing Sample Size

“How many samples do we need?” is a very common question. It is one you will receive when planning nearly any kind of reliability testing. It is a great question.

Having too few samples means the results are likely not useful to make a decision. Too many samples improve the results, yet does add unnecessary costs. Getting the right sample size is an exercise starting in statistics and ending with a balance of constraints.

There are six elements to consider when estimating sample size. We will use the success testing formula, a life test with no planned failures, to outline the necessary considerations.

Statistical Considerations

The variance of the population is rarely known when contemplating sample sizes. It is important to know the value or to at least have a reasonable estimate. The more variability, larger the variance, the more samples you will need for any sample size.

When the population has a larger amount of variability, the ability to detect or measure a statistic (mean, standard deviation, etc.) accurately becomes more difficult than from a population with a smaller variance.

The population variance is what it is unless you first take on a project to minimize and stabilize the population variability. This is often not possible.

Generally, we use a sample size to measure something in order to answer a question.

  • Is this design better than another?
  • Does vendor A have a longer life then vendor B’s solution?
  • Will this product last at least 5 years with fewer than 2% failures?

The ability to discriminate or detect changes is an element of sample size calculations. The ability to detect a small difference requires more samples then spotting a large difference.

Finally, the confidence value impacts the sample size requirements. If we want to take very little risk that the sample represents the population we will require more samples, then if we are will to take more risk (lower confidence). Confidence here relates to the chance the sample comes from one end or the other of the population range of values thus distorting the representation of the population based on the sample.

Business Considerations

Cost is a consideration, of course. Samples cost money. Even inexpensive samples take time to gather, plus they take resources to handle and measure. Cost is the most common business consideration.

One way to judge the cost of a sample set is in comparison to the value of the information the sample will provide. If the performance improvement based on selecting the right vendor’s parts is worth 10x the cost of the samples and testing, then it is likely worth it. Of course, a 10x return may or may not be sufficient within your organization.

A related consideration is the importance of the decision being made based on the sample. If it is a $10 decision (where to have lunch today, for example) you may not need any samples, just go to lunch. If the decision is a $768,000 decision, then gathering enough samples to make the best decision is well worth it (if the samples and testing costs are sufficiently low.

Another consideration is the purpose of the sample. If conducting an exploratory set of experiments to learn how a design responds to different stresses, then one or two samples may provide sufficient results.

Whereas a complex accelerated life test that provides evidence behind durability claims to customers, then taking the appropriate steps to use sufficient samples is in order.

Success Testing Sample Size Formula

The success test approach attempt to replicate the set of stresses or use of a product over its entire lifetime. For example, if a car door hinge will experience 10,000 open/close cycles over its lifetime, then we may design a test to simply open/close some set of car doors 10k times each.

The following formula is from the Binomial distribution when zero failures occur. The sample size, n, set of doors in this case, if they each cycle without failure for 10k times each (m is the lifetime, which is 1 lifetime in this example), then we can claim the reliability, RL, has been demonstrated with confidence, C.

$$ \displaystyle\large n=\frac{\ln \left( 1-C \right)}{m\ln \left( {{R}_{L}} \right)}$$

Two of the three statistical considerations have representation in this formula. C is the confidence. A common value is 0.9 for a 90% confidence.

The RL is the reliability value, in our example let’s say we want to demonstrate at least a 90% reliability over the lifetime of 10,000 open/close cycles.

The discrimination consideration is not within this formula as it is a one-sided experiment looking to demonstrate some minimum reliability value. This is a binomial-based experiment with either a sample has a failure during the cycling or not. In other testing that includes some measurement which has variability than would require a term to address the discrimination desired.

This means if all the samples cycle over one lifetime (here 10k cycles) then we have a 90% confidence that the population has at least a 90% reliability. If we wanted to demonstrate a higher reliability value and/or with high confidence we would require more samples.

Summary

As a statistician, more samples are better, yet calculation how many samples you need based on the statistic of the experiment is the first step. Then consider and balance the sample size with the appropriate business considerations.

We rarely get enough samples for all that we want to do. Consider the consequences of too few samples as obtaining results that are not useful for any decision making. Then focus on using samples for those critical or important decisions. Spreading too few samples over too many experiments will likely result in little useful information and many poor decisions.

Use statistics to estimate sample size requirements then balance risk, cost, and other factors to find the right sample size for your particular experiment.

Filed Under: Articles, CRE Preparation Notes, Reliability Testing Tagged With: Attribute Testing, Reliability test planning

About Fred Schenkelberg

I am the reliability expert at FMS Reliability, a reliability engineering and management consulting firm I founded in 2004. I left Hewlett Packard (HP)’s Reliability Team, where I helped create a culture of reliability across the corporation, to assist other organizations.

« A Proposed Product Life Cycle Process
Using manometers for measuring pressure  »

Comments

  1. Sam L. says

    May 8, 2018 at 2:40 PM

    A pretty good formula for a quick estimation of sample size. So completing the math from the car door example to demonstrate a Reliability of 90% with a confidence of 90% we need 22 car doors and each must cycle 10k times with zero fails. I’ve never really used the “m” since the lifetime is already accounted for in the Reliability goal over the usage life. Also as a note an easier way to remember the formula: R^n = 1 – CL

    Then just solve for “n” by taking the natural log of each side:
    ln(R)*n = ln(1-CL)
    n = ln(1-CL) / ln (R)

    Reply
    • Fred Schenkelberg says

      May 8, 2018 at 3:45 PM

      Thanks for completing the math Sam, and 22 is the sample size if the test runs for one lifetime with 90% reliability and demonstrating at least a 90% reliability.

      the m or number of lifetimes is pretty handy if, in this case, we could run for 20k door open/close cycles, then m would equal 2, meaning we would only need 11 samples, if none failed, to demonstrate 90/90.

      Cheers,

      Fred

      Reply
      • Maxamillion McMahon says

        February 6, 2021 at 9:26 AM

        Hi Fred,

        Do you have a reference for this formula (including the m)? I agree, I’ve never seen the m included.

        Would be

        Max

        Reply
        • Fred Schenkelberg says

          February 6, 2021 at 9:42 AM

          One place I’ve seen this formula including the m is in Gary’s book, in chapter 6 Test Sample Size Determination under section 6.4.2 Extended Bogey Testing Under Exponential Life Model – sections following include m with Weibull sample size formulas as well.

          Wasserman, Gary S. Reliability Verification, Testing and Analysis in Engineering Design. New York: Marcel Dekker, 2003.

          cheers,

          Fred

          Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

CRE Preparation Notes

Article by Fred Schenkelberg

Join Accendo

Join our members-only community for full access to exclusive eBooks, webinars, training, and more.

It’s free and only takes a minute.

Get Full Site Access

Not ready to join?
Stay current on new articles, podcasts, webinars, courses and more added to the Accendo Reliability website each week.
No membership required to subscribe.

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ]

[/popup]

  • CRE Preparation Notes
  • CRE Prep
  • Reliability Management
  • Probability and Statistics for Reliability
  • Reliability in Design and Development
  • Reliability Modeling and Predictions
  • Reliability Testing
  • Maintainability and Availability
  • Data Collection and Use

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy