Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by nomtbf Leave a Comment

No excuse to use parts count to estimate field reliability

How to Estimate Reliability Early in a Program

#89627498 / gettyimages.com

In a few discussions about the perils of MTBF, individuals have asked about estimating MTBF (reliability) early in a program. They quickly referred to various parts count prediction methods as the only viable means to estimate MTBF.

One motivation to create reliability estimates is to provide feedback to the team. The reliability goal exists and the early design work is progressing, so estimating the performance of the product’s functions is natural. The mechanical engineers may use finite element analysis to estimate responses of the structure to various loads. Electrical engineers may use SPICE models for circuit analysis.

Customers expect a reliable product. If they are investing in the development of the product (military vehicle, custom production equipment, or solar power plant, for examples) they may also want an early estimate of reliability performance.

Engineers and scientists estimate reliability during the concept phase as they determine the architecture, materials, and major components. The emphasis is often on creating a concept that will deliver the features in the expected environment. The primary method for reliability estimation is engineering judgement.

With the first set of designs, there is more information available on specific material, structures, and components, thus it should be possible to create an improved reliability estimate.

Is testing the true way to estimate MTBF?

Early in a program means there are no prototypes available for testing, just bill of materials and drawings. So, what is a reliability engineer to do?

One could argue that without prototypes or production units available for testing (exercising or aging the system to simulate use conditions) we do not really know how the system will respond to use conditions. While it is true it is difficult to know what we do not know, we often do know quite a bit about the system and the major elements and how they individually will respond to use conditions.

Even with testing, we often use engineering judgement to focus the stresses employed to age a system. We apply prior knowledge of failure mechanism models to design accelerated tests. And, we use FMEA tools to define the areas most likely to fail, thus guiding our test development.

Creating a reliability estimate without a prototype

Engineering judgement is the starting point. Include the information from FMEA and other risk assessment methods to identify the elements of a product that are most likely to fail, thus limit the system reliability. Then there are a few options available to estimate reliability, even without a prototype.
First, it is rare to create a new product using all new materials, assembly methods, and components.

Often a new product is approximately 80% the same as previous or similar products. The new design may be a new form factor, thus mostly a structural change. It may includes new electronic elements – often just one or two components, where the remaining components in the circuit regularly used. Or, it may involve a new material, reusing known structures and circuits.

Use the field history of similar products or subsystems and engineering judgement for the new elements to create an estimate. A simple reliability block diagram may be helpful to organize the information from various sources.

For the new elements of a design, base the engineering judgement on analysis of the potential failure mechanisms, employ any existing reliability models, or use simulations to compare known similar solutions to the new solution.

Second, for the elements without existing similar solutions and without existing failure mechanism models, we would have to rely on engineering judgement or component or test coupon level testing. Rather than wait for the system prototypes, early in a program it is often possible to obtain samples of the materials, structures, or components for evaluation.

The idea is to use our engineering judgement and risk analysis tools to define the most likely failure mechanisms for the elements with unknown reliability performance. Let’s say we are exploring a new surface finish technique. We estimate that exposure to solar radiation may degrade the finish. Therefore, obtain some small swatches of material, apply the surface finish and expose to UV radiation. While not the full product using fully developed production processes, it is a way to evaluate the concept.

Another example, is a new solder joint attachment technique. Again, use your judgement and risk analysis tools to estimate the primary failure mechanisms, say thermal cycling and power cycling, then obtain test packages with same physical structures (the IC or active elements do not have to be functional) and design appropriate tests for the suspected failure mechanisms.

Estimate combine the available knowledge

With a little creativity we can provide a range of estimates for elements of a design that have little or no field history. We do not need to rely on a tabulate list of failure rates for dissimilar product created by a wide range of teams for diverse solutions. We can draw from our team’s prior designs actual field performance for the bulk of the estimate. Then fill in the remaining elements of the estimate with engineering judgement, comparative analysis, published reliability models, or coupon or test structure failure mechanism evaluations.

In general, we will understand the bulk of the reliability performance and have rational estimates for the rest. It’s an estimate and the exercise will help us and the team focus on which areas may require extensive testing.

Filed Under: Uncategorized

« OC Curve with Binomial Method
Reliability Engineering is More Than Tools »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ]

[/popup]

The Accendo Reliablity logo of a sun face in circuit

Please login to have full access.




Lost Password? Click here to have it emailed to you.

Not already a member? It's free and takes only a moment to create an account with your email only.

Join

Your membership brings you all these free resources:

  • Live, monthly reliability webinars & recordings
  • eBooks: Finding Value and Reliability Maturity
  • How To articles & insights
  • Podcasts & additional information within podcast show notes
  • Podcast suggestion box to send us a question or topic for a future episode
  • Course (some with a fee)
  • Largest reliability events calendar
  • Course on a range of topics - coming soon
  • Master reliability classes - coming soon
  • Basic tutorial articles - coming soon
  • With more in the works just for members
Speaking of Reliability podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Dare to Know podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Accendo Reliability Webinar Series podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy