Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by Fred Schenkelberg Leave a Comment

The Paired-Comparison Hypotheses Test for Variances

The Paired-Comparison Hypotheses Test for Variances

The F-test provides a means to compare paired data variances. It is a variance hypothesis test.

If we are exploring the precision of one measuring device or another, or we are comparing assembly processes, we often want to know if the variance is different or not.
Working with data from normal distributions from two different processes or devices, we know from statistical theory that the ratio (s1)2 / (s2)2 is described by the F distribution.
There are three hypothesis test possible, basically to test if the population variances are different, or one is less than or greater than the other. The following details the three test’s null and alternative hypotheses.

Assuming the population variances are equal
$$ \large\displaystyle \begin{array}{l}{{H}_{0}}:\sigma _{1}^{2}=\sigma _{2}^{2}\\{{H}_{1}}:\sigma _{1}^{2}\ne \sigma _{2}^{2}\end{array}$$

Assuming population variance 1 is less then or equal to population variance 2
$$ \large\displaystyle \begin{array}{l}{{H}_{0}}:\sigma _{1}^{2}\le \sigma _{2}^{2}\\{{H}_{1}}:\sigma _{1}^{2}\gt\sigma _{2}^{2}\end{array}$$

Assuming population variance 1 is greater than or equal to population variance 2
$$ \large\displaystyle \begin{array}{l}{{H}_{0}}:\sigma _{1}^{2}\ge \sigma _{2}^{2}\\{{H}_{1}}:\sigma _{1}^{2}\lt\sigma _{2}^{2}\end{array}$$

Recall that the shape of the F distribution is non-symmetrical and depends on the degrees, DF, of freedom of the two sample variances, s12 and S22. We will use v1 and v2 respectively, and v1 is the DF in the numerator. By convention we use the larger sample variance as s12 and place it in the numerator.

Example Problem

For a medical delivery device, the ability for a specific part to remain strong (measured in psi) is important even after a 2 year period of storage. Assuming a 95% confidence level, use the data to determine if the variation is equal or better after aging.
At the start we tested 9 units and found a standard deviation of 900 psi. After two years of aging, we tested 7 units and determined a 300 psi variation.

Solution

The null and alternative hypothesis are

$$ \large\displaystyle \begin{array}{l}{{H}_{0}}:\sigma _{1}^{2}\le \sigma _{2}^{2}\\{{H}_{1}}:\sigma _{1}^{2}>\sigma _{2}^{2}\end{array}$$

and, DF1 = 8 and DF2 = 6

We are using a one-tailed test to explore if after aging the units have a smaller variance. The entire α risk will be in the right tail. From the F distribution, the critical value of F is 4.15. Thus we will reject the null hypothesis if the ratio of the two sample variances is greater than 4.15.

$$ \large\displaystyle F=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{{{900}^{2}}}{{{300}^{2}}}=9$$

Since, 9 is greater than 4.15 we have sufficient evidence, 95% confidence, to reject the null hypothesis and conclude strength variation is reduced after aging for two years.


Related:

Hypothesis Tests for Variance Case I (article)

Hypothesis unequal variance (article)

Levene’s Test (article)

 

Filed Under: Articles, CRE Preparation Notes, Probability and Statistics for Reliability Tagged With: hypothesis test, Hypothesis Testing (parametric and non-parametric), Variance

About Fred Schenkelberg

I am the reliability expert at FMS Reliability, a reliability engineering and management consulting firm I founded in 2004. I left Hewlett Packard (HP)’s Reliability Team, where I helped create a culture of reliability across the corporation, to assist other organizations.

« Product Reliability Participants part 7
Teacher and Student »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

CRE Preparation Notes

Article by Fred Schenkelberg

Join Accendo

Join our members-only community for full access to exclusive eBooks, webinars, training, and more.

It’s free and only takes a minute.

Get Full Site Access

Not ready to join?
Stay current on new articles, podcasts, webinars, courses and more added to the Accendo Reliability website each week.
No membership required to subscribe.

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ]

[/popup]

  • CRE Preparation Notes
  • CRE Prep
  • Reliability Management
  • Probability and Statistics for Reliability
  • Reliability in Design and Development
  • Reliability Modeling and Predictions
  • Reliability Testing
  • Maintainability and Availability
  • Data Collection and Use

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy