Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by Fred Schenkelberg 3 Comments

Hypothesis Tests for Proportion

Hypothesis Tests for Proportion

This is also called the “p test”

When comparing proportions that are from a population with a fixed number of independent trials and each trial has a constant probability of one or another outcome (Bernoulli experiments) then we can use a p test. p is the probability of success, and 1-p is the probability of failure. Caution: stay consistent once you define success otherwise, like me, you’ll have a bit of confusion. n is the number of trials.

The exact way to solve these problems is with the Binomial distribution, yet when np and n(1-p) is greater than 5, then the normal distribution provides similar results. The use of the Binomial distribution is calculation intensive thus when possible we tend to use the normal distribution for the calculations.

Let’s say we want to compare a proportion, p, to a fixed value, po. Like other hypothesis tests we have three comparisons possible. The null hypothesis, Ho, could be equal to, greater than, or less than the fixed value, po. The alternative hypothesis  Ha, defines the contrary conditions.

The three cases then are:

The population proportion of successes is equal to a fixed (given) value.

$$ \large\displaystyle \begin{array}{l}{{H}_{o}}:p={{p}_{o}}\\{{H}_{a}}:p\ne {{p}_{o}}\end{array}$$

The population proportion of successes is less then or equal to a fixed value.

$$ \large\displaystyle \begin{array}{l}{{H}_{o}}:p\le {{p}_{o}}\\{{H}_{o}}:p>{{p}_{o}}\end{array}$$

The population proportion of successes is greater than or equal to a fixed value.

$$ \large\displaystyle \begin{array}{l}{{H}_{o}}:p\ge {{p}_{o}}\\{{H}_{o}}:p<{{p}_{o}}\end{array}$$

The test statistic is given by

$$ \large\displaystyle z=\frac{x-n{{p}_{o}}}{\sqrt{n{{p}_{o}}\left( 1-{{p}_{o}} \right)}}$$

Where

x is the number of successes out of the

n trials

po is the fixed proportion being compared to the data.

A great way to remember the formula for the test statistic is the number of success in the sample is compared to the mean value, npo , and divided by the standard deviation, which is the square root of npo (1- po ).

Example Problem

Let’s consider an example. Let’s say we’re inspecting corn from a test field. If the inspection accepts 30% of the sample or better, we conclude the field produces corn that is as good as or better than an average field of corn. We sample 150 ears of corn and find that 60 of the sample of 150 failed the inspection. Is there convincing evidence the test field has a higher failure rate than an average field? Use alpha = 0.05.

Solution

The null and alternative hypothesis are

$$ \large\displaystyle \begin{array}{l}{{H}_{o}}:p\le 0.30\\{{H}_{o}}:p>0.30\end{array}$$

The test statistic is

$$ \large\displaystyle z=\frac{x-n{{p}_{o}}}{\sqrt{n{{p}_{o}}\left( 1-{{p}_{o}} \right)}}$$

The rejection region for α = 0.05 means we will reject Ho if

$$ \large\displaystyle z>1.645$$

Using the sample data, first determine the number of successes, x = 60, (those that fail the test as we defined above).

To be certain we can use the normal approximation, check that npo = 45, and npo(1-po) = 105. Both are greater than 5, so we may proceed with the normal approximation.

The test statistic is then

$$ \large\displaystyle z=\frac{0.4-0.3}{\sqrt{150\times 0.3\times 0.7}}=2.67$$

Since the observed z value is greater than the test statistic it is in the rejection region and we reject the null hypothesis. We conclude that there is convincing evidence that the test field has a lower yield (higher inspection failures) then the expected average result.


Related:

Two Proportions Hypothesis Testing (article)

Binomial Probability Density Function (article)

Hypothesis Test Selection (article)

 

Filed Under: Articles, CRE Preparation Notes, Probability and Statistics for Reliability Tagged With: Hypothesis Testing (parametric and non-parametric), Population Proportion

About Fred Schenkelberg

I am the reliability expert at FMS Reliability, a reliability engineering and management consulting firm I founded in 2004. I left Hewlett Packard (HP)’s Reliability Team, where I helped create a culture of reliability across the corporation, to assist other organizations.

« Reliability Goals
Please don’t remove MTBF, part 2 »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

CRE Preparation Notes

Article by Fred Schenkelberg

Join Accendo

Join our members-only community for full access to exclusive eBooks, webinars, training, and more.

It’s free and only takes a minute.

Get Full Site Access

Not ready to join?
Stay current on new articles, podcasts, webinars, courses and more added to the Accendo Reliability website each week.
No membership required to subscribe.

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ]

[/popup]

  • CRE Preparation Notes
  • CRE Prep
  • Reliability Management
  • Probability and Statistics for Reliability
  • Reliability in Design and Development
  • Reliability Modeling and Predictions
  • Reliability Testing
  • Maintainability and Availability
  • Data Collection and Use

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy