Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by nomtbf Leave a Comment

An Industry of MTBF Use

What can you do if everyone across you industry is using MTBF?

  • First, stop using MTBF yourself.
  • Second, show others the information that is found in using Reliability directly rather than using MTBF.
  • Third, translate your work back to MTBF and be very clear about duration and other assumptions.

Stop using MTBF yourself

You do not have to announce the change or ask permission. Just take the data you already have and instead of calculating the MTBF, calculate appropriate reliability function. Fit to Weibull or Lognormal or whatever is appropriate.

See if you can see the difference.

Calculate the reliability at points in time that are important to your product or system. Then calculate the same value use the Exponential distribution reliability function based on the MTBF you would have used.

Different? Why is that?

Let’s say you are working on a motor and gear box assembly and have times to failure data for a few machines. You and your maintenance team knows that the system will wear out over time and as it ages, the chance for failure increases.

This data will most likely follow a Weibull distribution with a beta (shape parameter) that is greater than one. Let’s assume the MTBF is 5 years of operating time. Note: You could also use a mean cumulative function to understand the effect of repairs over time, if the equipment is repairable. MCF is preferred for repairable systems and Weibull for non-repairable when I’m first looking at life data.

And, let’s say we’re interested in the chance of successfully operating for a year. The MTBF (exponential distribution based) will underestimate the probability of the system to operate for a year, whereas the Weibull will correctly reflect the relatively low probability of failure in the first year with an increase is chance to failure as it wears in later years.

Does your data show a difference? If so would it alter any decisions you would make based on the data? This first step is really just to convince you to use the appropriate distribution or statistical technique to convert your data into information.

Show others your results

After convincing yourself and becoming comfortable with the calculations, show those around you.

Especially show those making decisions based on the data. Show your customers, vendors, suppliers, and engineering teams. Show your marketing and finance teams, too. Talk to sales and anyone else that will listen.

Show them that using the data to make decisions is a part of how we operate. Show them using an accurate reflection of the data permits better decisions. It will save you time, money, resources, and frustration.

The first time I did this, I simply provided the MTBF calculation along with a short calculation and plot of the same data using a Weibull fit. It provided a quite comparison and illustrated the difference in the view of the same data the two techniques provided.

I was amazed at how quickly others understood and correctly used the cumulative distribution function (CDF) or plot showing time vs probability of failure. (For the marketing group I used the Reliability function plot as it is a bit more positive being the probability of success. They liked ‘success’ over ‘failure’.

Even managers got it.

Translate back to MTBF (if forced to do so)

Only if forced to do so.

When facing customers and an entire industry of inertia and common use, just switching away from MTBF may not be possible.

In this case, continue to use your data to extract the best information by using the appropriate techniques. Make good decisions and recommendations.

When required to provide an MTBF value – as a minimum provide:

  • The MTBF value with a duration over which it is appropriate
  • The impact of using the assumption of constant failure rate when it isn’t true
  • The probability of success (or failure) figure over the same period based on Exponential and Weibull, for example.
  • And, add a link to the nomtbf.com site (optional)

In short, focus on the value of making good decisions and the cost of making poor decisions. We are using data, estimate, requirements, etc to make decisions. Using the best available information allows us to make better decisions.

Filed Under: Articles, NoMTBF

« Chi-Square Test of Independence
Reliability Target Establishment »

Comments

  1. Paul says

    June 11, 2014 at 12:36 PM

    Overall, I agree. It occurs to me that there’s an interesting juxtaposition. When I buy tires, I don’t expect to replace them for some time. Yet a tire manufacturer will be perfectly happy with tracking a constant failure rate. I should think that where you are in the “food chain” will have some effect on the models that are useful.

    In the same way, there are many processes that we can model using a constant rate (and I believe many of them are Poisson processes) so long as certain conditions are met. Over a year’s time, I will likely buy kleenex at a more or less constant rate. But if I have a cold, then for a time I’ll have a higher usage rate. If the failure is running out of tissue, then the decision is when to buy more. These kinds of decisions are fairly common. The model I choose needs to take into account the decision I will make.

    Reply
  2. Fred Schenkelberg says

    June 11, 2014 at 12:44 PM

    I suspect a smart tire vendor will notice your rate of tire wear and send you a reminder to check thread wear about when the tires are due for replacement. They could even track and predict the perfectly timed advert if they perform regular car maintenance and tire rotations for your vehicle.

    Thanks for the comment and examples.

    Cheers,

    Fred

    Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ]

[/popup]

The Accendo Reliablity logo of a sun face in circuit

Please login to have full access.




Lost Password? Click here to have it emailed to you.

Not already a member? It's free and takes only a moment to create an account with your email only.

Join

Your membership brings you all these free resources:

  • Live, monthly reliability webinars & recordings
  • eBooks: Finding Value and Reliability Maturity
  • How To articles & insights
  • Podcasts & additional information within podcast show notes
  • Podcast suggestion box to send us a question or topic for a future episode
  • Course (some with a fee)
  • Largest reliability events calendar
  • Course on a range of topics - coming soon
  • Master reliability classes - coming soon
  • Basic tutorial articles - coming soon
  • With more in the works just for members
Speaking of Reliability podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Dare to Know podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Accendo Reliability Webinar Series podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy