Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by nomtbf Leave a Comment

How to Justify Using the Exponential Distribution

How to Justify Using the Exponential Distribution

Grant Hutchinson Reliable
Grant Hutchinson
Reliable

Do you check assumptions? Not all assumptions are equal as some may lead you to a costly decision.

We regularly make assumptions about the uniformity of material, the consistency of part to part performance, and many other engineering elements of a design or process. We have to simply the problems we face in order to work out solutions and make decisions.

We rely on models and formulas that simply the world around us. If done well, the assumptions we make help us focus on the significant contributors that will influence how we create designs or select vendors. When the uncertainty that our models and assumptions are correct, we check assumptions. When the cost of making a wrong decision is high, we check assumptions.

In reliability engineering we often confront the assumption that the failures will occur as described by an exponential distribution. In some, I would say rare, situations assuming the exponential distribution is appropriate. In others it is not.

Common Practice

If you are using vendor data in the form of MTBF, MTTF, or failure rate without any other information, you are assuming the exponential distribution.

Many common reliability test design guidelines and standards assume an exponential distribution and may not even state it’s an assumption. Any test which tallies the total time on test certainly is assuming the exponential distribution.

It is a common practice to tally the total time items have been in service or under test and divide by the number of failures that have occurred. Once again, assuming the exponential distribution.

Unfortunately this is a common assumption.

Impact of Assumptions that are wrong

We know that assumptions are both necessary and risky. The risk includes the chance of error, or a poor decision, of increase costs or expense. We also take a personal risk to our credibility and trustworthiness as faulty assumptions come to light.

Using the exponential distribution and associated calculations may lead to either grossly under or over estimating required spares at great cost either way. It may cause us to set aside too much or too little warranty accruals, again either way is troublesome to corporations.

When the exponential distribution is inaccurate it leads to doubt and mistrust of reliability engineering. Once that trust is lost, it is very difficult to be effective as a reliability professional.

Consider the assumptions of your calculations and the supporting information for decisions. When the risks warranty, check the assumptions. Let’s consider couple basic ways to check the exponential distribution assumption.

Engineering Considerations

If the failure mechanism has either a decreasing failure rate over time, or exhibits a wear out pattern, then the assumption of exponential is not valid. Of course there are cases where the change if failure rate over time is insignificant and the exponential would be fine, still you should check.

When purchasing expensive or critical equipment, and both vendors provide only an MTBF value. Ask more questions, like what is the expected failure mechanism(s) and the time to failure pattern. Keep in mind that items like fans, motors, bearings, compressors, all have moving parts and will wear out. New technology and items from a new production line or facility will often have some portion failing early and overall showing a decreasing failure rate.

Think though the product and how similar products have performed in the past. If using the exponential distribution assumption in the past was a mistake it probably is today, also a mistake.

Decision Making Considerations

When it’s important, check the assumptions.

When it’s a new product launch, new market launch, new technology launch, when it’s your career and reputation on the line, check your assumptions.

As a general practice as least ask the questions about the assumptions. What is the supporting evidence that exponential is suitable? What is the impact of getting wrong based on a poor assumptions?

Statistical Tests

When you have data, or have similar enough data (measurements based on the same process, technology, product family, etc.) then you can use statical tools to determine if the assumed exponential distribution is valid or not.

The simplest is to plot the data using Weibull plotting paper or fit the data to a Weibull cumulative density function (CDF) to get an estimate of the beta parameter (slope). If beta is equal or very close to 1.0, then there is evidence that the exponential distribution is suitable. The Weibull distribution is equivalent to the exponential when beta equals 1.

You could also use a software package to fit the data to a Weibull distribution and check the confidence bounds about the beta parameter. If the bound include the value of 1.0, then there is some evidence that the exponential distribution is suitable. Keep in mind that the beta parameter is difficult to accurately estimate and may have large confidence bound even though the actual distribution has a slope significantly other than 1.0.

Another approach is a goodness-of-fit test. Like an hypothesis test, we set the null hypothesis to the data is comes from an exponential distribution, with the alternative hypothesis that the exponential is not a good fit. Fit, here meaning the curve described by the exponential distribution does not adequately describe the actual pattern the data described. Like in linear regression, it’s obvious when you view a plot and the line isn’t near most of the data points.

For the serious reader, check out two goodness-of-fit tests described in the NIST Engineering Statistics Handbook.

  1. Chi-square test

  2. Anderson-Darling test

With these tests you can evaluate the chance the fit is more likely to have come from a distribution other then the exponential. Which in my experience is most of the time.

Summary

Check your assumptions.

Ask for or run experiments to get data to adequately check your assumptions.

And, if all this is too much work, simply avoid using the exponential distribution.

Filed Under: Articles, NoMTBF

« Why do Tolerance Analysis
Safety Factor »

Comments

  1. Tim Adams says

    January 5, 2015 at 11:09 AM

    Hi Fred. The Laplace Test is another way to test for constant failure rate. This test is the method recommended in the IEC standard 60605-6.

    Reply
    • Fred Schenkelberg says

      January 5, 2015 at 1:07 PM

      Thanks Tim,
      Wasn’t aware of that standard – which method(s) do they recommend?

      Cheers,

      Fred

      Reply
      • Tim Adams says

        January 5, 2015 at 1:42 PM

        In IEC 60605-6:1997, four tests are described to test for constant failure rate, namely, three tests for non-repaired items and one test for repaired items. For non-repaired items, two tests are numerical and require at least 10 failures. The third type of test for non-repaired items is graphical and is used when the failure count is at least four and less than 10. The two numerical tests use the Chi-square test. For a repaired item having at least six failures, the Laplace Test is used.

        Reply
    • Fred Schenkelberg says

      January 5, 2015 at 1:09 PM

      Hi Tim,

      Never mind – you did mention the Laplace test… I’ll have to check it out and maybe add an example to the site.

      Cheers,

      Fred

      PS: Happy Monday!

      Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ]

[/popup]

The Accendo Reliablity logo of a sun face in circuit

Please login to have full access.




Lost Password? Click here to have it emailed to you.

Not already a member? It's free and takes only a moment to create an account with your email only.

Join

Your membership brings you all these free resources:

  • Live, monthly reliability webinars & recordings
  • eBooks: Finding Value and Reliability Maturity
  • How To articles & insights
  • Podcasts & additional information within podcast show notes
  • Podcast suggestion box to send us a question or topic for a future episode
  • Course (some with a fee)
  • Largest reliability events calendar
  • Course on a range of topics - coming soon
  • Master reliability classes - coming soon
  • Basic tutorial articles - coming soon
  • With more in the works just for members
Speaking of Reliability podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Dare to Know podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Accendo Reliability Webinar Series podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy