Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • CMMSradio
    • Way of the Quality Warrior
    • Critical Talks
    • Asset Performance
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Hero
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Breaking Bad for Reliability
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • The RCA
      • Communicating with FINESSE
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Hardware Product Develoment Lifecycle
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Special Offers
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • Your Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
      • FMEA Introduction
      • AIAG & VDA FMEA Methodology
    • Barringer Process Reliability Introduction
      • Barringer Process Reliability Introduction Course Landing Page
    • Fault Tree Analysis (FTA)
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
    • Accendo Reliability Webinar Series
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
Home » Podcast Episodes » Rooted in Reliability: The Plant Performance Podcast » 193-Empowering RES with Automation

by James Kovacevic Leave a Comment

193-Empowering RES with Automation

Empowering RES with Automation

Industry 4.0 is here to stay. Organizations are now getting their feet wet in Artificial intelligence and Machine Learning as a way of increasing their output. However, aa good number of these companies have their projects stuck at the pilot stage, either due to inadequate management support, or simply communicating value to other departments. AJ Alexander walks us through the understanding of why this is a good time to start pilots and stimulate their growth.

Important highlights include:

  • Understanding the type and stage of data for Machine Learning
  • The advantages of successful ML deployments  
  • Why organizations are slow to adapt
  • Hw can you go about increasing the chances of transitioning from pilot to project

What type of data is there for use?

Today in industry, there can be a variety of data streams. These can range from process data to master data and even real time data. Machine Learning (ML) algorithms can work on any type of these data streams, the only condition being that the data is numerical and ith a time series. Examples of this data could be positioning, centering, temperature, pressure, humidity to name a few

Where the information gets stored

Information from processes and equipment can get stored in either proprietary servers or with other known cloud services platforms like Google and Amazon. As long as the data collection has been designed by people, it can be stored and modeled. 

Can organizations leverage ML expertise to make an improvement?

The answer is yes. A data scientist’s main job is to take your data sets and structure them in a way that teams and model, or use it to train algorithms. Organizations with a process engineer have a slightly easier time because this is the person with an understanding of the process. S/he can also help prepare data for the data scientist.

Today, the available machine learning tools are also becoming more affordable, user-friendly and robust. Examples are Sorba and Open Protocol IoT which have a drag-and-drop approach to building models. 

Types of decisions that this expertise allows us to make

Artificial Intelligence (AI) and Machine learning deployments mainly accelerate detection and prediction needs for organizations. More measurable results of these technologies can be increased uptime, condition monitoring of equipment, failure detection, root cause analysis, etc.

Why don’t integrators take advantage of ML?

Traditionally, tech companies would sell a box or a disc as a solution to a business. Customers were limited by the provisions of the presented hardware and software capabilities. That is shifting today.

As customers have unique processes and assets, it now becomes a dynamic role for integrators to tweak solutions almost on a project basis. This need also means that integrators need to team up with the domain experts so as to deploy successful ML projects.

Why organizations are still slow on adoption

With any technology change, cultural change is one of the most significant determinants of success. For industry, departments that act as silos add a layer of difficulty to adoption. There has to be a communication and operational link between Information Technology (IT) and Operations Technology (OT) departments. 

Top management buy-in is also necessary for the adoption of these programs. Once the product champion has received management backing, it then becomes their role to win the support of the other staff. 

Technologies available for implementation of ML

The domain of Machine Learning contains a wide range of libraries that can be applied to facility data. Examples are Neural Networks which facilitate training and prediction algorithms.

What makes the biggest difference

To realize the potential of technology projects like this, communication through the organization is key. The product champion must work to demonstrate the importance of these technologies to siloed departments. Otherwise, the pilot project might never grow to make an impact in the organization. 

Key takeaways

The main learning points from this episode are that:

  1. Machine Learning deployments are heavily based on a clear problem definition. Therefore ensure that the team in charge has involved various departments in the organization to get an appropriate description of the problem. 
  2. Communicate your intentions continuously and seek input across the organization. This approach also helps people buy into the project as they are being involved.
  3. Surrounding yourself with domain experts also ensures that they can help you refine your design based on the field realities. 

What people can do today

The key takeaway is to continue learning, asking questions and deploying demos. Starting small gives you validation early on on the success of ML deployments before scaling up. 

Eruditio Links:

  • Eruditio
  • HP Reliability
  • James Kovacevic’s LinkedIn
  • Reliability Report

AJ Alexander Links:

  • AJ Alexander LinkedIn
  • Twitter Profile
  • Website
Rooted in Reliability: The Plant Performance Podcast
Rooted in Reliability: The Plant Performance Podcast
193-Empowering RES with Automation
Loading
00:00 /
RSS Feed
Share
Link
Embed

Download filePlay in new window

Download RSS iTunesStitcher

Rooted In Reliability podcast is a proud member of Reliability.fm network. We encourage you to please rate and review this podcast on iTunes and Stitcher. It ensures the podcast stays relevant and is easy to find by like-minded professionals. It is only with your ratings and reviews that the Rooted In Reliability podcast can continue to grow. Thank you for providing the small but critical support for the Rooted In Reliability podcast!

Filed Under: Rooted in Reliability: The Plant Performance Podcast, The Reliability FM network

About James Kovacevic

James is a trainer, speaker, and consultant that specializes in bringing profitability, productivity, availability, and sustainability to manufacturers around the globe.

Through his career, James has made it his personal mission to make industry a profitable place; where individuals and manufacturers possess the resources, knowledge, and courage to sustainably lower their operating costs.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Rooted in Reliability podcast logo

The plant performance podcast

image of James Kovacevic
by James Kovacevic


Subscribe and enjoy every episode
Google
Apple
Spotify

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy

Book the Course with John
  Ask a question or send along a comment. Please login to view and use the contact form.
This site uses cookies to give you a better experience, analyze site traffic, and gain insight to products or offers that may interest you. By continuing, you consent to the use of cookies. Learn how we use cookies, how they work, and how to set your browser preferences by reading our Cookies Policy.