Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
    • About Us
    • Colophon
    • Survey
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • CMMSradio
    • Way of the Quality Warrior
    • Critical Talks
    • Asset Performance
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Hero
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • NoMTBF
    • on Leadership & Career
      • Advanced Engineering Culture
      • ASQR&R
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Maintenance Management
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • RCM Blitz®
      • ReliabilityXperience
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Breaking Bad for Reliability
      • Field Reliability Data Analysis
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability by Design
      • Reliability Competence
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
      • Reliability Knowledge
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • The RCA
      • Communicating with FINESSE
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Institute of Quality & Reliability
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Statistical Methods for Failure-Time Data
      • Testing 1 2 3
      • The Hardware Product Develoment Lifecycle
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Special Offers
    • Accendo Authors
    • FMEA Resources
    • Glossary
    • Feed Forward Publications
    • Openings
    • Books
    • Webinar Sources
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • Your Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Live Courses
      • Introduction to Reliability Engineering & Accelerated Testings Course Landing Page
      • Advanced Accelerated Testing Course Landing Page
    • Integral Concepts Courses
      • Reliability Analysis Methods Course Landing Page
      • Applied Reliability Analysis Course Landing Page
      • Statistics, Hypothesis Testing, & Regression Modeling Course Landing Page
      • Measurement System Assessment Course Landing Page
      • SPC & Process Capability Course Landing Page
      • Design of Experiments Course Landing Page
    • The Manufacturing Academy Courses
      • An Introduction to Reliability Engineering
      • Reliability Engineering Statistics
      • An Introduction to Quality Engineering
      • Quality Engineering Statistics
      • FMEA in Practice
      • Process Capability Analysis course
      • Root Cause Analysis and the 8D Corrective Action Process course
      • Return on Investment online course
    • Industrial Metallurgist Courses
    • FMEA courses Powered by The Luminous Group
      • FMEA Introduction
      • AIAG & VDA FMEA Methodology
    • Barringer Process Reliability Introduction
      • Barringer Process Reliability Introduction Course Landing Page
    • Fault Tree Analysis (FTA)
    • Foundations of RCM online course
    • Reliability Engineering for Heavy Industry
    • How to be an Online Student
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
    • Accendo Reliability Webinar Series
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home
Home » Podcast Episodes » Speaking Of Reliability: Friends Discussing Reliability Engineering Topics | Warranty | Plant Maintenance » SOR 375 HALT Versus ALT

by Christopher Jackson Leave a Comment

SOR 375 HALT Versus ALT

HALT Versus ALT

Abstract

Chris and Adam discussing HALT and ALT. What are these? HALT stands for Highly Accelerated Life Testing. ALT stands for Accelerated Life Testing. They sound very similar. But they are not. HALT is a destructive test regime. In fact, a good HALT plan will involve that product failing many times. This is done by subjecting the product to stresses (vibration, thermal cycling et cetera) well beyond actual operating stresses. Some of the failures this creates will not be relevant. That is, they will simply never occur when the product is used ‘normally.’ But many failures are relevant. And by undertaking HALT, we now have a good idea of which failure mechanisms and modes are likely to occur when it is used normally. And this information is incredibly valuable to a design team. ALT on the other hand starts with a failure mechanism you know about. And in a short period of time, you can predict how long that failure mechanism will cause your product to fail when used normally.

Still confused? Well listen to this podcast.

Key Points

Join Chris and Adam as they discuss HALT and ALT. HALT stands for Highly Accelerated Life Testing. ALT stands for Accelerated Life Testing. So no big difference, right? Wrong.

HALT involves subjecting a product to stresses that are well beyond those likely to be experienced during ‘normal’ operation. This will sometimes cause the product to fail in ways that simply aren’t possible when used correctly. But many of the failures that are observed when conducting HALT will eventually occur in ‘normal’ operations. So when a product ‘fails’ during HALT, we (where possible) simply patch it up, and keep testing it. Because the aim is to create a list of the likely or dominant failure mechanisms and modes that can then be forwarded to the design team. And as a designer, how useful would it be for someone to give you a list of the (likely) weakest points in your design?

ALT is entirely different. Say that you know that you know that fatigue that causes one of the actuators in a relay to fail open is going to be a problem in your product (… perhaps using HALT to work this out). This means you can use a physics of failure (PoF) approach to model the corrosion, understand what factors are in play (likely temperature and humidity), and work out some relationship between these factors and time to failure. For chemical reactions, we often use the Arrhenius model. This means you can work out how much faster your component degrades when exposed to a higher temperature and humidity when compared to ‘normal’ operating conditions. This is called an acceleration factor (AF). An AF of 10 means that your ALT will make your product fail 10 times faster. If your product fails after 1 hours of ALT, it will likely fail after 10 hours of ‘normal’ use. If we increase our AF to a much higher value, we might be able to replicate an entire lifetimes use in a matter of weeks.

HALT gives you a list of likely dominant failure mechanisms. ALT helps you predict when one of these failure mechanisms will cause failure.

As with anything to do with reliability, things aren’t as straight forward as they seem. So Chris and Adam talk about:

Apollo program … rocket motor … exhaust cone … black powder … see how it broke … dampened the vibration.

Topics include:

  • How some organizations don’t get the value of either activity, saying things like ‘of course it failed, you exposed to ridiculously high stresses.’
  • How HALT can help you protect your product from ‘abnormal’ usage such as the user dropping your product
  • That no matter what you do, either activity is useless if it doesn’t inform a design decision to make that product more reliable.
  • How HALT has been successfully used on so many products from all eras. For example, HALT was used in the Apollo program to design a better rocket motor exhaust cone. Engineers actually destroyed the cone with black powder to see how it broke, producing a much more robust product as result.

Enjoy an episode of Speaking of Reliability. Where you can join friends as they discuss reliability topics. Join us as we discuss topics ranging from design for reliability techniques, to field data analysis approaches.


Speaking Of Reliability: Friends Discussing Reliability Engineering Topics | Warranty | Plant Maintenance
Speaking Of Reliability: Friends Discussing Reliability Engineering Topics | Warranty | Plant Maintenance
SOR 375 HALT Versus ALT
Loading
00:00 /
RSS Feed
Share
Link
Embed

Download filePlay in new window

Download Audio RSS

Show Notes

 

Filed Under: Speaking Of Reliability: Friends Discussing Reliability Engineering Topics | Warranty | Plant Maintenance, The Reliability FM network

About Christopher Jackson

Chris is a reliability engineering teacher ... which means that after working with many organizations to make lasting cultural changes, he is now focusing on developing online, avatar-based courses that will hopefully make the 'complex' art of reliability engineering into a simple, understandable activity that you feel confident of doing (and understanding what you are doing).

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Speaking of Reliability podcast logo Subscribe and enjoy every episode
Google
Apple
Spotify
Enjoy an episode of Speaking of Reliability. Where you can join friends as they discuss reliability topics. Join us as we discuss topics ranging from design for reliability techniques, to field data analysis approaches.

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Please login with your site registration to suggest a topic or post a question.

If you haven't registered, it's free and takes only a moment.

Registration

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy

Book the Course with John
  Ask a question or send along a comment. Please login to view and use the contact form.
This site uses cookies to give you a better experience, analyze site traffic, and gain insight to products or offers that may interest you. By continuing, you consent to the use of cookies. Learn how we use cookies, how they work, and how to set your browser preferences by reading our Cookies Policy.