Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by Fred Schenkelberg Leave a Comment

Reliability and Worst Case Analysis

Reliability and Worst Case Analysis

Worst-case tolerance analysis is the starting point when creating a tolerance specification.

It is a conservative approach as it only considers the maximum or minimum values of part variation—whichever leads to the worst situation. Setting tolerances such that the system will function given the expected variation of manufactured components improves that ability of the system to perform reliably.

In the worst-case method, you simply add the dimensions using the extreme values for those dimensions. Thus, if a part is specified at 25 ± 0.1 mm, then use either 25.1 or 24.9 mm, whichever leads to the most unfavorable situation.

The actual range of variation should be the measured values from a stable process. It may be based on vendor claims for process variation, industry standards, or engineering judgment.

Simple Example

Let’s consider a stack of five plates and we want to estimate the combined thickness. If each plate is 25 ± 0.1 mm, then the combined thickness will be 5 times 25 mm, for 125 mm for the nominal thickness. The math for the minimum and maximum is about as simple.

[NOTE: Checkout the ebook Statistical Tolerance Analysis]

The tolerance is ± 0.1 mm; thus, combining five plates at maximum and minimum tolerances provides a tolerance for five plates of ± 0.5 mm.

Thus, the stack of five plates will have a thickness of 125 ± 0.5 mm or a range in thickness from 124.5 to 125.5 mm.

Best Practices and Assumptions

Worst-case tolerance analysis is quick and easy.

You need just the tolerances of the components involved. There is no need for distributions or assumptions about distributions. We should have evidence that the part tolerances are real though. If the plate is specified as 25 ± 0.1 mm, then verify that the measured values actually fall within the range of the tolerance.

If the design function and the manufacturing process work using the worst-case tolerance analysis, then that is a safe way to set tolerances.

There are, however, cases where the tolerance stack is too large for the design or assembly process.

In that case, consider conducting the analysis using the root sum squared or Monte Carlo methods. The approach also works when considering the variability of loads or environmental stresses.

If you can handle the worst case, that may be good enough to create a reliable design.


Statistical Tolerance Analysis - Basic Introduction by Fred Schenkelberg book cover
This quick introduction to three statistical analysis methods enables you to quickly determine or assess part tolerances. Plus, you will learn why tolerances are critical to achieving a reliability product or system.

Please login with your site registration to immediately download this ebook which includes step by step examples and details on the data you need to get started today.

[popup type=”” link_text=”Login” link_class=”button”]

[/popup]

If you haven’t registered, it’s free and takes only a moment.

Join Accendo Reliability


Filed Under: Articles, Musings on Reliability and Maintenance Topics, on Product Reliability Tagged With: tolerance analysis

About Fred Schenkelberg

I am the reliability expert at FMS Reliability, a reliability engineering and management consulting firm I founded in 2004. I left Hewlett Packard (HP)’s Reliability Team, where I helped create a culture of reliability across the corporation, to assist other organizations.

« The Poisson Distribution
Lognormal Distribution »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Article by Fred Schenkelberg
in the Musings series

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy