Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by Mike Sondalini Leave a Comment

Rolling Bearing Vibration Detection

Rolling Bearing Vibration Detection

Roller bearing vibration measurement is one of the major condition monitoring tools in regular use. By measuring the velocity, acceleration and frequencies emitted from a rolling bearing it is possible to tell its condition and the likelihood of imminent failure. The technology is well established and well proven but requires a good understanding of equipment vibration characteristics before a user can draw good interpretations from the results.

Keywords: out of balance, vibration analysis, bearing life

Method of Bearing Vibration Monitoring

All bearings, even those in perfect condition, produce ‘noise’ as the elements roll over the raceways and rub against the internal cage and flanges. This noise is generated at high frequency and low amplitude. The bearing housing amplifies the noise to a point where a sensitive accelerometer can ‘hear’ them. By careful detection and filtering, the noise signal can be amplified and represented as a frequency series in real-time.

Most bearing faults occur with the rolling elements, cage or raceways. The frequency of the fault has a direct relationship with the geometry of the bearing and the relative speed of each individual raceway. Software libraries of noises for bearings in ideal condition are available for the vast number of bearings. By comparing the actual noise to the ideal bearing signature it is possible to highlight problems with the in-service bearing. The method of presenting the data is either by visually representing it on an oscilloscope screen (monitor screen) as waves or as a number on a digital display.

The Four Stages of Bearing Failure

A roller bearing progresses through four stages to failure. Vibration analysis permits the monitoring of the bearing’s progression through each stage and to estimate when failure will actually occur. In the case of a raceway failure, these would be the four progressive stages.

  1. The bearing is new and has no defects. This is the time to record its frequency ‘signature’ and normal operating acceleration and velocity values.
  2. If examined at this stage there would be no visible defects. However, under the surface of the raceway subsurface defects have started. The frequency signature has changed, the overall base level noise has risen and the velocity spectrum (graph) has risen higher.
  3. At this point the raceway shows visible signs of surface failure. The extent of the failure increases and grows with more metal coming off in minute sheets (delaminating). The velocity spectrum is much higher and much more background noise has developed. Within the background noise particular frequencies start to standout (side bands) and indicate failure is fast approaching.
  4. If the bearing is still in service everyone knows it is time to change it out because they can hear it. More vibration frequencies appear and more velocity side bands develop. Readings start to indicate amplitude changes and the noise moves into the range of human hearing.

A Great Range of Uses

Bearing vibration analysis can detect lubrication failures, misalignment, out of tolerance running, rubbing, improper gear teeth meshing, out of balance, bent shafts, loose components, worn parts, faulty couplings, improper operating conditions (like pump cavitation) and deflecting support structures. However to be able to analyse the presence of these type of problems requires a highly skilled person with much experience and exposure to bearing vibration signatures at various stages of failure.

Mike Sondalini – Equipment Longevity Engineer

Reference: Toward Plant and Equipment Reliability, P. Brown, Industrial Training Associates, (www.itatraining.com.au)

 


We (Accendo Reliability) published this article with the kind permission of Feed Forward Publishing, a subsidiary of BIN95.com

Web: trade-school.education
E-mail: info@trade-school.education

If you found this interesting you may like the ebook Process Control Essentials.

Filed Under: Articles, on Maintenance Reliability, Plant Maintenance

About Mike Sondalini

In engineering and maintenance since 1974, Mike’s career extends across original equipment manufacturing, beverage processing and packaging, steel fabrication, chemical processing and manufacturing, quality management, project management, enterprise asset management, plant and equipment maintenance, and maintenance training. His specialty is helping companies build highly effective operational risk management processes, develop enterprise asset management systems for ultra-high reliable assets, and instil the precision maintenance skills needed for world class equipment reliability.

« FMEA Q and A – Where do reliability requirements belong in an FMEA?
Risk and the Limitations of Knowledge »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Article by
Mike Sondalini
in the
Plant Maintenance series articles provided courtesy of Feed Forward Publications and Lifetime Reliability Solutions.

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy