Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by James Reyes-Picknell Leave a Comment

Uptime Insights – 8 – Asset Reliability

Uptime Insights – 8 – Asset Reliability

You can wait for something to break, then fix it, or you can be proactive and manage the failure before it causes you problems. Being proactive is all about managing failures and their consequences before they occur. The failure itself, in some cases, is unavoidable, but how you manage consequences is entirely within your control.

You can reduce or eliminate the consequences of failure by forecasting what is likely to happen and deciding in advance about what to do about it.  Major business impacts are the consequences of risks and those are manageable.

Reliable operations are no accident. All plants and equipment are designed to be reliable, but not achieve it. Those that do are managed proactively.

The advantage is that reliable plants are much less expensive to maintain, they run longer and more predictively, produce more, are safer and less likely to result in environmental or other non-compliances. Reliable plants are good for business!

To achieve that requires the right sort of effort focused on reliability and a foundation of good practices in the “Essentials” area of the Uptime Pyramid of Excellence (i.e.: work management, basic care, materials management, performance management and use of technology). Let’s assume those are in place – not perfect, they don’t need to be, but not a chaotic mess either.

Reliability Centered Maintenance (RCM) is the most proven proactive approach for developing maintenance programs from scratch. It is a logical process that asks seven seemingly easy to answer questions. It uses our knowledge of how things fail, how those matter in your operation, and walks us through a decision process to arrive at sound and defensible failure management policies.  RCM avoids or minimizes the consequences of failures. One of the great strengths of RCM is that it does not require failures to have occurred in order to generate data for analysis – it anticipates the most likely failure modes and deals with them before you suffer the consequences.

RCM results in a safe minimum amount of appropriate proactive maintenance. It balances cost and risk vs. reliability and is tailored specifically to your operating environment. The tendency to over- or under-maintain, often a result of using other methods or following the manufacturer recommendations, is avoided. RCM should be the cornerstone of your reliability program – at the very least, for your critical assets.

The keys to success in RCM are the careful application of the process itself and follow-up by implementing the results in your maintenance program. Many failures of well-run RCM programs occur because the outputs of the analysis are not put into practice in the operational environment.  The follow up is critical. Optimizing the maintenance program after it has been put into place is done on a continuous basis. You can “PMR/O” (proactive maintenance review/optimization) and root cause analysis methods for refinement.

Preventive Maintenance Review/Optimization (PMR/O) is a method based on RCM logic that is applied to existing maintenance programs in an attempt to optimize them. PMR/O arose out of the need to improve the performance of existing maintenance programs that failed to meet desired performance expectations. RCM logic is used in analyzing the various maintenance activities of the existing program in order to eliminate or modify them. It attempts to identify failure modes that may have been missed by the original maintenance program but it is not as thorough as RCM.

Root Cause Failure Analysis (RCFA) is entirely reactive to failures that have already occurred. RCFA is a method of performing a sort of “post mortem” to determine what caused any particular failure. The intent is to eliminate the “root cause”, that being the identifiable cause that you can manage in some practical way. Because you do it after the failure has occurred it generates excellent results, but you don’t want to consider it for developing a whole new maintenance program.

Decision optimization techniques and tools help maintainers to make fact-based decisions or to improve on decisions already made. RCM can be used before the asset is put into service (as it is in the aircraft and nuclear industries). Decisions made about task frequencies and failure modes are then made with some degree of uncertainty, but with an experienced team, results are excellent.

Optimization techniques are used to analyze the in-service data to validate or modify the original decisions. It requires failure data that has been accumulated in service, but that data is often flawed. Interpreting that data requires great care.

Reliability and simulation modeling are techniques that allow us to mathematically model the behavior of our installed systems. They can reveal where we have process bottlenecks, and if we are working to improve on one bottleneck, where the next ones are likely to arise.  These models can also show us the effect of various reliability improvements at different points in the systems and help us focus our engineering efforts more effectively.

Filed Under: Articles, Conscious Asset, on Maintenance Reliability

About James Reyes-Picknell

James is the best-selling author of “Uptime – Strategies for Excellence in Maintenance Management”, now in its 3rd edition, co-author of “Reliability Centered Maintenance – Re-engineered”, co-founder and Principal Consultant of Conscious Asset.

He is a Mechanical Engineer, graduate of the University of Toronto and has more than 44 years working in Operations, Maintenance, Reliability and Asset Management.

« Analyzing the Experiment (Part 2) – Determining Significant Effects
Have the Faith to Seize risk Opportunities »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Conscious Asset series

Article by James Reyes-Picknell

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Posts

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy