Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by nomtbf Leave a Comment

What do we know given MTBF?

What do we know given MTBF?

What do we know with MTBF

Tom Magliery Reliable
Tom Magliery
Reliable

How many times have you been given only MTBF, a single value? The data sheet or sales representative or website provides only MTBF and nothing more. We see it all the time, right? It is provided as the total answer to “what is the reliability performance expectation?”

So, given MTBF what do we really know about reliability?

As you may suspect, not much.

Assumed Knowledge

Most of time we will assume it is the expected value or mean of the exponential distribution imposing a constant hazard rate, which we also generally know is not true. We know that MTBF is the inverse of failure rate, thus may try a few calculations on expected failure over some period of time.

We also know that our estimates and calculations often are inconsistent with actual reliability performance. So, we really do not know very much that is useful

Basis for MTBF reporting

In at least one case, the specific MTBF value was listed on data sheets only because the same number also appeared on competitor data sheets. Pure fiction.

In some cases the value is based on limited testing of units that did not show any failures. Say 1,000 capacitors run for 100 hours without any failures. That would imply at least a 100,000 hour MTTF (often reported as an MTBF – just to continue to add to confusion – not that it matters much). In such testing we do not know anything about the behavior beyond 100 hours.

At 50,000 hours of operation (a little over 5 years of full time use) the expected probability of survival (reliability) based on the assumed exponential distribution is R(50k) = exp [ – 50k / 100k ] = 0.605 or about 61% reliable. Which we know from experience is generally not true.

In some cases, the value is derived from a database of part MTBF values using a parts count prediction with unstated assumptions, derating factors, quality factors, or other modeling parameters. Keep in mind that these methods are not intended to predict reliability performance in any realistic manner.

In some cases, the MTBF value is determined based on extensive reliability testing. The testing may include testing to failure and fitting to a Weibull distribution. Instead of report the Weibull parameters for a fan which wears out, the marketing folks calculate the MTBF of the distribution and report just the MTBF. The MTBF value is larger and impressive and higher number are better as opposed to the informative and useful Weibull distribution results.

In some cases the MTBF value is calculated based on reported field issues. This may relative accurate for the expected field performance if there isn’t any early life or wear out failure mechanisms.

These last two are most painful, as the information we really need is there and then ‘dumbed down’ for reporting. Using inadequate or meaningless methods isn’t much better, yet given just MTBF how do know the source and what could be available?

We don’t.

We really do not know anything useful when given MTBF. Realize this is the case and go find or create better information.

Filed Under: Articles, NoMTBF

« Confounded DOE
Purpose of a Reliability Program »

Comments

  1. Dave Robson says

    March 22, 2015 at 12:35 AM

    I try to describe the ‘traditional’ MTBF as point in space with an underlying exponential distribution, without any confidence bounds. Many people still don’t get it.

    Reply
    • Fred Schenkelberg says

      March 22, 2015 at 9:45 AM

      Hi Dave, unfortunately the lack of statistical knowledge among otherwise well educated folks is troublesome. cheers, Fred

      Reply
  2. Paul Franklin says

    March 25, 2015 at 9:31 AM

    Very often, MTBF is the result of some calculation that uses data from an unknown source and with unknown quality. Nothing is usually known about *how* the data was collected or the methods used to analyze it. Nothing is usually known about the failure analysis that the reliability engineer did (or even if there was any).

    If there’s field data, even from your company, many of these same problems remain, and they are compounded by the fact that the population of product in use will be smaller than the global population, and any one company may not see all the relevant failure modes.

    And while a constant failure rate model works on a large population, it very often doesn’t work for a local division of a company. The analogy I like to use is that a tire manufacturer knows that the average life of a tire is 60,000 miles and that means that it needs to produce 4132 tires per day. That is of little use to me, since I have only 4 tires on a car and I will buy more when the tread has worn enough (whether or not that happens at 60,000 miles). And it is of small comfort to me if my tire is damaged beyond repair by a pothole.

    My point is this: the numbers are useful guide, but they are only that. Doing real modeling and understanding how you estimate the parameters you use in those models is far more important. A reliability engineer’s objectives are (1) to do what’s possible to prevent failures, and (2) to plan what happens when things go wrong.

    Reply
    • Fred Schenkelberg says

      March 25, 2015 at 9:43 AM

      Hi Paul, thanks for the comment – as you suspect I agree that MTBF isn’t very useful. I would even argue that with large populations we can and should use accurate time to failure distribution and/or detailed understanding of failure mechanisms to make decisions.

      I once heard the request, “I don’t care what reliability you claim, as long as you only sell me the one that works.” The metrics we use helps us to set goals, track development and field performance and most importantly, make decisions. Using the best metrics (most accurate and easy to understand, imho) only helps us create reliable products and systems.

      Cheers,

      Fred

      Reply
    • Don (PLC Training) says

      March 25, 2015 at 10:04 AM

      So true. Data is often is deceptive when not put into the larger perspective.
      Example: 80% surveyed say my burgers are the best in the world. (larger perspective… 10 of my family members where the only people surveyed. LOL)

      Reply
      • Fred Schenkelberg says

        March 25, 2015 at 11:10 AM

        Hi Don,

        Thanks for the comment and example – and, you could increase the same size for burger tasting…. I’m up for that 😉 — just to help your stats, of course.

        Cheers,

        Fred

        Reply

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ]

[/popup]

The Accendo Reliablity logo of a sun face in circuit

Please login to have full access.




Lost Password? Click here to have it emailed to you.

Not already a member? It's free and takes only a moment to create an account with your email only.

Join

Your membership brings you all these free resources:

  • Live, monthly reliability webinars & recordings
  • eBooks: Finding Value and Reliability Maturity
  • How To articles & insights
  • Podcasts & additional information within podcast show notes
  • Podcast suggestion box to send us a question or topic for a future episode
  • Course (some with a fee)
  • Largest reliability events calendar
  • Course on a range of topics - coming soon
  • Master reliability classes - coming soon
  • Basic tutorial articles - coming soon
  • With more in the works just for members
Speaking of Reliability podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Dare to Know podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Accendo Reliability Webinar Series podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy