Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by nomtbf Leave a Comment

What is the MTBF Means?

What is the MTBF Means?

What is the MTBF Means?

Guest post by Msc Teofilo Cortizo

The term MTBF (Mean Time Between Failures) within maintenance management, it is the most important KPI after Physical Availability. Unlike MTTF (Mean Time To Failure), which relates directly to available equipment time, MTBF also adds up the time spent inside a repair. That is, it starts its count from a certain failure and only stops its counter when this fault was remedied, started and repeated itself again. According to ISO 12849: 2013, this indicator can only be used for repairable equipment, and MTTF is the equivalent of non-repairable equipment.

The graphic below illustrates these occurrences:

Figure 01: Mean Time Between Failures
Figure 01: Mean Time Between Failures

Calculating the MTBF in the Figure 01, we have added the times T1 and T2 and divided by two. That is, the average of all times between one failure and another and its return is calculated. It is, therefore, a simple arithmetical calculation. But what does it mean?

Generally speaking, this indicator is associated with a reliability quality of assets or asset systems, and may even reach a repairable item, although it is rarer to have data available to that detail. Maintenance managers set some benchmark numbers and track performance on a chart over time. In general, the higher the MTBF the better, or fewer times of breaks and repairs over the analyzed period.

Once we have fixed the concepts, some particularities need to be answered:

1. Can we establish periodicity of a maintenance plan based on MTBF time?

2. Can I calculate my failure rates based on my MTBF?

3. Can I calculate my probability of failure based on my MTBF?

4. If the MTBF of my asset or system is 200 hours, after that time will it fail?

It is interesting to answer these questions separately:

1. Can we establish periodicity of a maintenance plan based on MTBF time?

The MTBF is an average number calculated from a set of values. That is, these values can be grouped into a histogram to generate a data distribution where the average value is its MTBF, or the average of the data. Imagine that this distribution follows the Gaussian law and we have a Normal curve that was modeled based on the failure data. The chart below shows that the MTBF is positioned in the middle of the chart.

Figure 02: Normal Distribution Model
Figure 02: Normal Distribution Model

In a modeled PDF curve (Probability Density of Failure) the mean value, or the MTBF, will occur after 50% of the failure frequencies have occurred. If we implement the preventive plan with a frequency equal to the MTBF time, it will already have a 50% probability of failing. Therefore, the MTBF is not a number that indicates the optimal time for a scheduled intervention.

 2. Can I calculate my failure rates based on my MTBF?

Considering the modeling of the failure data to calculate the MTBF, it´s only possible in the exponential distribution fix a value where the failure rate is the inverse of the MTBF:

MTBF = 1 / ʎ

In this distribution, the MTBF time already corresponds to 63.2% probability of failure.

Figure 03: Exponential Distribution Model
Figure 03: Exponential Distribution Model

Any modeling other than exponential, the failure rate will be variable and time dependent, so its calculation will also depend on factors such as the probability density function f(t) and the reliability function R(t).

ʎ(t) = h(t) = f(t) / R(t)

Although the exponential distribution is the most adopted in reliability projects, which would generate a constant failure rate over time, most of the assets have variations within their “bathtub curve”, as exemplified by Moubray:

Figure 04: Different Bathtub Curves (Moubray, 1997)
Figure 04: Different Bathtub Curves (Moubray, 1997)

 

This means that the exponential expression is not best suited to reflect the behavior of most assets in an industrial plant.

3. Can I calculate my probability of failure based on my MTBF?

As seen above, only in the exponential distribution has a constant failure rate that can be calculated as the inverse of the MTBF. In this case, yes, we can calculate the probability of failure of an asset using the formula below:

f(t) = ʎˑexp(-ʎt)

For other models where the failure rate depends on the time, it is only possible to calculate the probability of failure through a data modeling and determination of a parametric statistical curve.

4. If the MTBF of my asset or system is 200 hours, after that time will it fail?

The question is, what exactly does that number mean? It was shown that MTBF isn´t used as a maintenance plan frequency. According to the items explained above, this time means nothing as it is not comparable to its history over the months. If the parametric model governing the behavior of the assets in a reliability study is not determined, the time of 200 hours has no meaning for a probability of failure. In the case of the MTBF provided by equipment manufacturers is different, through life tests they determine exponential curves and thus calculate the time in which there will be 63.2% of sample failures.

I hope the article has helped us to reflect on the definitions of an indicator that is both used but also so misunderstood within industrial maintenance management.

Msc Teofilo Cortizo

Reliability Engineer

 

Filed Under: Articles, NoMTBF

« US Climate Change Assessment
5 Common Questions on the IIoT (Industrial Internet of Things) »

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

[popup type="" link_text="Get Weekly Email Updates" link_class="button" ]

[/popup]

The Accendo Reliablity logo of a sun face in circuit

Please login to have full access.




Lost Password? Click here to have it emailed to you.

Not already a member? It's free and takes only a moment to create an account with your email only.

Join

Your membership brings you all these free resources:

  • Live, monthly reliability webinars & recordings
  • eBooks: Finding Value and Reliability Maturity
  • How To articles & insights
  • Podcasts & additional information within podcast show notes
  • Podcast suggestion box to send us a question or topic for a future episode
  • Course (some with a fee)
  • Largest reliability events calendar
  • Course on a range of topics - coming soon
  • Master reliability classes - coming soon
  • Basic tutorial articles - coming soon
  • With more in the works just for members
Speaking of Reliability podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Dare to Know podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Accendo Reliability Webinar Series podcast logo

Subscribe and enjoy every episode

RSS
iTunes
Stitcher

Join Accendo

Receive information and updates about podcasts and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

Recent Articles

  • test
  • test
  • test
  • Your Most Important Business Equation
  • Your Suppliers Can Be a Risk to Your Project

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy