CRE Primer - errata

J Cooper

9/26/2011 revised (added last item on this list, page 3)

Primer

page VI-52

During useful life the reliability of a system or component is characterized by the exponential distribution. This distribution is unusual, in that the average and the standard deviation are the same value. The following identities apply:

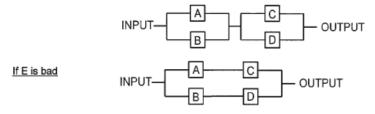
Exponential Distribution

$$f(t) = (e^{-\lambda t}) \circ \lambda$$

Mean of the Exponential Distribution = $\mu = \frac{1}{\lambda}$

CRE 2009

VI - 52


© QUALITY COUNCIL OF INDIANA

Solution Text, page 99:

should be:

Step 1 = P(success if E is good)* (PE is good) =

If E is good

Step 1 =
$$P_{(succoss f E is bad)} P_{(E is bad)}$$

= $[(R_A + R_C - R_A R_C)(R_B + R_D - R_B R_D)] [0.60]$
= $[(0.8 + 0.8 - 0.64)(0.7 + 0.7 - 0.49)] [0.60]$
= $[(0.96)(0.91)] [0.60]$

CDROM ID 698

errata: Answer implies that II at bottom and III at right.

Primer

p III-26

should be P(t<2) = ... [not t<200]

Example 3.25: A random variable has the probability density function f(x) = 0.125x, where x is valid from 0 to 4. The probability of x being less than or equal to 2 is:

Solution:

$$P(t < 200) = \int_{2 \text{ not}}^{2} 0.125x \ dx = \frac{0.125x^{2}}{2} \int_{0}^{2} = 0.0625x^{2} \int_{0}^{2} = 0.25$$

Example 2.20. The Great for the first form the state of the following state of the first state of the first

Primer

p. III-57

Example 3.41 (Continued): The probability of more than 2 successes is equal to one minus the probability of exactly zero successes minus the probability of exactly one success minus the probability of exactly two successes.

$$P(0,8,0.2) = {8 \choose 0} 0.2^{0} (1-0.2)^{8-0} = 0.1678$$
typos:

$$P(1,8,0.2) = {8 \choose 1} 0.2^{d} (1-0.2)^{8-1} = 0.3355$$
 0.2^{^2}

$$P(2,8,0.2) = {8 \choose 2} 0.2^{\circ} (1-0.2)^{8-2} = 0.2936$$
 0.2²

	-2.015	2.132
Step 3: Calculate the t statistic: $t = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$	$t = \frac{0.0050 - 0.0055}{0.00048/\sqrt{6}}$ $t = -2.551$	$t = \frac{0.054 - 0.050}{0.056/\sqrt{5}}$ $t = 1.597$
Step 4: Can one reject the null hypothesis?	Since the value of calculated t is to the left of -2.015, the null hypothesis is rejected. The wear is less for the new plug design.	Since the value of calculated t (1.597) is not to the right of the critical t (2.132), the null hypothesis can't be rejected. Insufficient evidence exists for the new technique to be profitable.

Table 4.5 A Matrix Review of Two Student's t Tests

Primer - blue pages questions, Chapter III

3.10 should be 3.5 "multiplicative effects ..."

Primer

page IX-24

Example 9.1 (Continued): A manually calculated beta, can be determined from the following equations:

Where:

$$\beta = \frac{\Delta y}{\Delta x}$$

$$\Delta x = \ln(t_2) - \bigoplus_{i=1}^{n} \mathcal{L}_{i,i}(t_i)$$

$$\Delta y = \ln \ln\left(\frac{1}{1 - F(t_2)}\right) - \ln \ln\left(\frac{1}{1 - F(t_1)}\right)$$

For our sample calculation of β, we will choose 2000 cycles and 6000 cycles. The