Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by Dianna Deeney Leave a Comment

QDD 054 Design Specs vs. Process Control, Capability, and SPC

Design Specs vs. Process Control, Capability, and SPC

This fourth episode of the “QDD Versus” series focuses on concepts relating to Design for Manufacturability. Understand how design specs fit into process control, process capability, and SPC and where they typically don’t fit at all.

We talk about things to think about when setting limits on design features.
And, when defining controls for potential failures, knowing how processes are controlled can help us decide if the controls we have are good enough or not.

 

 

View the Episode Transcript

What’s today’s insight to action?

  1. Recognize that there’s variation in everything, and we can use statistical methods to analyze and monitor the effects of that variability on the output of our manufacturing process.
  2. We want to define design limits for our parts, considering typical process capabilities. If we’re not sure about the realistic process capabilities related to whatever we’re designing, then we can talk to somebody that’s in the manufacturing department (a process engineer or a quality engineer) and they can help determine what’s a realistic tolerance that could be, or may be, maintained for the type of part that you’re designing.
  3. Consider the manufacturing and technology limitations when designing. Just because it exists doesn’t mean that we have access to it to be able to use it.
  4. If you work in a place with manufacturing or have a relationship with a trusted supplier that manufactures components for you, find out if they do statistical process control and get familiar with process variation and manufacturing. It will help you with Design for Manufacturing and it’ll also help you design for your customers, both internal and external.

 

Citations

 

Episode Transcript

Hi, welcome to quality during design for products, others love for less. I’m your host, Diana Deeney. Today, we’re comparing a couple of topics between design and manufacturing, specifically design specifications versus manufacturing process control and capability. Now, really the kind of concepts that we’re covering today have a lot to do with Design for Manufacturability. The choices made at design affects the downstream operations in manufacturing, and that’s an important thing to consider when defining specifications for products. We’ll be talking about process control versus process capability, and also where statistical process control fits and how it’s related to design controls for risk. Design specifications, process control, and process capability all intersect and at the middle of where these intersect is where we have a process that is consistently creating products within specification.

To understand how this all ties together, we first need to recognize that there’s variation everywhere in everything. Whenever we’re measuring or counting something there’s going to be variation. Variation is introduced just from the natural manufacturing process itself. It’s introduced from the variation that’s coming into the process from its raw materials and how it’s handled. And there’s even variation that is caused by the way we measure it. Our process outputs aren’t single point outputs – they cover a range.

Just a couple of episodes ago in this “Versus” series, we compared discrete data versus continuous data: the two different types of data that we can get when we measure something. Discrete are counts or categories and continuous is measured on a continuous scale. When we plot our discrete data on a bar chart, we can look at its probability function as a probability mass function. If we have continuous data, we can plot it on a histogram and look at its probability density functions. These probability functions usually take on the classic bell-shaped curve, or at least we hope they do because that means it’s normally distributed and makes statistical analysis a lot easier. But there are other probability distributions we could use. The point is: these probability functions represent the range of the process and manufacturing process outputs that we could be looking at, or considering, when we’re setting design specifications.

Now let’s consider and talk about how a process may develop over time. Design engineers may set a lower and an upper spec limit, but then the variation of the process itself needs to be evaluated. Say, it’s a brand new process that we’re not that familiar with and don’t fully understand. We’ll likely start out with a process that’s out of control. The peak of our bell shaped curve is going to shift from left to right. And it depends on the process inputs that we don’t fully understand and aren’t controlling. We cannot use a probability function to adequately describe how process is going to react in the future. And we can’t use it to predict how much of our product is really out of specification. Our process is all over the place.

As we learn more about our manufacturing process, we start to be able to repeat and reproduce the results and the outputs that we want. This is when we can get a process that is in control. We can use probability functions to estimate how much or what percentage of our product is out of specification. The peak of our bell-shaped curve is no longer shifting from left to right – it’s consistent. Our process is now in control, but it’s may not be capable, meaning that it’s producing product that is beyond the spec limits that were set by the design. And whether or not our process is control is dependent on the design feature that we’re measuring. It could be in control for the outer diameter, but the inner diameter is not in control.

Finally, as we hone and develop our manufacturing processes, even more, we can get to a point where our process is both in control and capable. The peak of our bell shaped curve now is no longer shifting and we’re manufacturing product that is within a lower and upper spec limits of the design tolerances.

This highlights the difference between a process that’s in control and a process that’s capable.

When we’re setting design specifications. We’re thinking about tolerances and limits and definitions about the things that affect our design, our design’s functionality, its performance, and its safety. For that reason, we sometimes call design specifications the “voice of the customer” because they relate back to how our customer is using the product and how the product gets used in the field, if it’s functional and performing as we intended. So, design specifications are “voice of the customer”. Our process, on the other hand, can produce a range of values of process outputs. And the features that we measure are defined as part of the design spec. Design specs are defining the “voice of the customer”, it’s also setting what features is most likely to be inspected and monitored during manufacturing processing. But the process is the process – there’s going to be variation. And for that reason, sometimes the natural variation of a manufacturing process is called the “voice of the process”. Process capability is the comparison between these two things: between the “voice of customer” and the “voice of the process”.

How manufacturing process development fits into design specifications is like this. We first define features to measure and their limits based on risk, either risk of not working functionally or not performing as expected or to desired and also safety and environmental risks. Then we assess if the manufacturing process is in control or stable. If it is in control and stable, then we can assess the process capability: is it able to produce parts consistently within spec? So as designers, the design specifications are defining the design features to measure for both process control and process capability. But the design specifications are really only considered when we’re evaluating the process capability.

Now what’s affecting the spread of our process and the range of different process outputs that we could be getting are special causes and common causes. Common causes are those things that we would expect to vary in our process from day to day: slight variations in the raw materials, or maybe the temperature and humidity changes in the building. These could be common causes that could affect the variability of our process output. The other cause is a special cause. And those are causes that are unusual and not expected. And those are the kind of causes that we really want to just get rid of. And special causes are the things that we want to monitor with statistical process control tools. Statistical process control usually uses control charts that use statistical methods to identify if there are a special cause of variation that needs to be corrected. Special causes could be wear on equipment or tooling or a new lot of material. Control charts provide evidence that the process is still in control. SPC isn’t typically related to design specifications. It’s showing that a process is stable over time. Remember that we first make sure the process is stable. And then we can determine if it’s capable of meeting the specs.

What’s today’s insight to action?

Well, first recognize that there’s variation in everything, and we can use statistical methods to analyze and monitor the effects of that variability on the output of our manufacturing process.

We want to define design limits for our parts, considering typical process capabilities. For example, if we set a .001″ tolerance on a plastic injection molded part that could be problematic. It could be more difficult to make (and it actually may be impossible to make, depending on the part), the tooling would have to be more precise, there would be more monitoring, more scrap, and all of that leads to a higher cost of product. It’s something that we want to avoid. Now, if we’re not sure about the realistic process capabilities related to whatever we’re designing, then we can talk to somebody that’s in the manufacturing department: a process engineer or a quality engineer, and they can help determine what’s a realistic tolerance that could be, or may be, maintained for the type of part that you’re designing.

We also need to consider the manufacturing and technology limitations when designing. Just because it exists doesn’t mean that we have access to it to be able to use it.

if you work in a place with manufacturing or have a relationship with a trusted supplier that manufactures components for you, find out if they do statistical process control and get familiar with process variation and manufacturing, it will help you design for manufacturing. And it’ll also help you design for your customers, both internal and external.

Thanks for listening.

 

Filed Under: Quality during Design

About Dianna Deeney

Dianna is a senior-level Quality Professional and an experienced engineer. She has worked over 20 years in product manufacturing and design and is active in learning about the latest techniques in business.

Dianna promotes strategic use of quality tools and techniques throughout the design process.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Quality during Design podcast logo

Tips for using quality tools and methods to help you design products others love, for less.


by Dianna Deeney
Quality during Design,
Hosted on Buzzsprout.com
Subscribe and enjoy every episode
Google
Apple
Spotify

Recent Episodes

QDD 128 Leveraging Proven Frameworks or Concept Development

QDD 127 Understanding Cross-Functional Collaboration

QDD 126 Exploring the Problem Space: A Key Principle for Robust Product Design and Project Success

QDD 125 Exploring Product Development and AI Through Literature

QDD 124 Design for User Tasks using an Urgent/Important Matrix

QDD 123 Information Development in Design, with Scott Abel – Part 2 (A Chat with Cross-Functional Experts)

QDD 122 Information Development in Design, with Scott Abel – Part 1 (A Chat with Cross-Functional Experts)

QDD 121 Crafting Effective Technical Documents for the Engineering Field

QDD 120 How to use FMEA for Complaint Investigation

QDD 119 Results-Driven Decisions, Faster: Accelerated Stress Testing as a Reliability Life Test

QDD 118 Journey from Production to Consumption: Enhancing Product Reliability

QDD 117 QDD Redux: Choose Reliability Goals for Modules

QDD 116 Reliability Engineering during Design, with Adam Bahret (A Chat with Cross-Functional Experts)

QDD 115 QDD Redux: 5 Options to Manage Risks during Product Engineering

QDD 114 The Instant Glory of Projects

QDD 113 What to do about Virtual Meetings

QDD 112 QDD Redux: How to self-advocate for more customer face time (and why it’s important)

QDD 111 Engineering with Receptivity, with Sol Rosenbaum (A Chat with Cross-Functional Experts)

QDD 110 Don’t Wish for Cross-Functional Buy-in on Product Designs – Plan to Get It!

QDD 109 Before You Start Engineering Solutions, Do This

QDD 108 QDD Redux Ep. 4: Statistical vs. Practical Significance

QDD 107 QDD Redux Ep. 3: When it’s Not Normal: How to Choose from a Library of Distributions

QDD 106 QDD Redux Ep. 2: How to Handle Competing Failure Modes

QDD 105 QDD Redux Ep. 1: How Many Do We Need to Test?

QDD 104 The Fundamental Thing to Know from Statistics for Design Engineering

QDD 103 What to do for Effective and Efficient Working Meetings

QDD 102 Get Design Inputs with Flowcharts

QDD 101 Quality Tools are Legos of Development (and Their 7 Uses)

QDD 100 Lessons Learned from Coffee Pod Stories

QDD 099 Crucial Conversations in Engineering, with Shere Tuckey (A Chat with Cross-Functional Experts)

QDD 098 Challenges Getting Team Input in Concept Development

QDD 097 Brainstorming within Design Sprints

QDD 096 After the ‘Storm: Compare and Prioritize Ideas

QDD 095 After the ‘Storm: Pareto Voting and Screening Methods

QDD 094 After the ‘Storm: Group and Explore Ideas

QDD 093 Product Design with Brainstorming, with Emily Haidemenos (A Chat with Cross Functional Experts)

QDD 092 Ways to Gather Ideas with a Team

QDD 091 The Spirits of Technical Writing Past, Present, and Future

QDD 090 The Gifts Others Bring

QDD 089 Next Steps after Surprising Test Results

QDD 088 Choose Reliability Goals for Modules

QDD 087 Start a System Architecture Diagram Early

QDD 086 Why Yield Quality in the Front-End of Product Development

QDD 085 Book Cast

QDD 084 Engineering in the Color Economy

QDD 083 Getting to Great Designs

QDD 082 Get Clarity on Goals with a Continuum

QDD 081 Variable Relationships: Correlation and Causation

QDD 080 Use Meetings to Add Productivity

QDD 079 Ways to Partner with Test Engineers

QDD 078 What do We do with FMEA Early in Design Concept?

QDD 077 A Severity Scale based on Quality Dimensions

QDD 076 Use Force Field Analysis to Understand Nuances

QDD 075 Getting Use Information without a Prototype

QDD 074 Finite Element Analysis (FEA) Supplements Test

QDD 073 2 Lessons about Remote Work for Design Engineers

QDD 072 Always Plot the Data

QDD 071 Supplier Control Plans and Design Specs

QDD 070 Use FMEA to Design for In-Process Testing

QDD 069 Use FMEA to Choose Critical Design Features

QDD 068 Get Unstuck: Expand and Contract Our Problem

QDD 067 Get Unstuck: Reframe our Problem

QDD 066 5 Options to Manage Risks during Product Engineering

QDD 065 Prioritizing Technical Requirements with a House of Quality

QDD 064 Gemba for Product Design Engineering

QDD 063 Product Design from a Data Professional Viewpoint, with Gabor Szabo (A Chat with Cross Functional Experts)

QDD 062 How Does Reliability Engineering Affect (Not Just Assess) Design?

QDD 061 How to use FMEA for Complaint Investigation

QDD 060 3 Tips for Planning Design Reviews

QDD 059 Product Design from a Marketing Viewpoint, with Laura Krick (A Chat with Cross Functional Experts)

QDD 058 UFMEA vs. DFMEA

QDD 057 Design Input & Specs vs. Test & Measure Capability

QDD 056 ALT vs. HALT

QDD 055 Quality as a Strategic Asset vs. Quality as a Control

QDD 054 Design Specs vs. Process Control, Capability, and SPC

QDD 053 Internal Customers vs. External Customers

QDD 052 Discrete Data vs. Continuous Data

QDD 051 Prevention Controls vs. Detection Controls

QDD 050 Try this Method to Help with Complex Decisions (DMRCS)

QDD 049 Overlapping Ideas: Quality, Reliability, and Safety

QDD 048 Using SIPOC to Get Started

QDD 047 Risk Barriers as Swiss Cheese?

QDD 046 Environmental Stress Testing for Robust Designs

QDD 045 Choosing a Confidence Level for Test using FMEA

QDD 044 Getting Started with FMEA – It All Begins with a Plan

QDD 043 How can 8D help Solve my Recurring Problem?

QDD 042 Mistake-Proofing – The Poka-Yoke of Usability

QDD 041 Getting Comfortable with using Reliability Results

QDD 040 How to Self-Advocate for More Customer Face Time (and why it’s important)

QDD 039 Choosing Quality Tools (Mind Map vs. Flowchart vs. Spaghetti Diagram)

QDD 038 The DFE Part of DFX (Design For Environment and eXcellence)

QDD 037 Results-Driven Decisions, Faster: Accelerated Stress Testing as a Reliability Life Test

QDD 036 When to use DOE (Design of Experiments)?

QDD 035 Design for User Tasks using an Urgent/Important Matrix

QDD 034 Statistical vs. Practical Significance

QDD 033 How Many Do We Need To Test?

QDD 032 Life Cycle Costing for Product Design Choices

QDD 031 5 Aspects of Good Reliability Goals and Requirements

QDD 030 Using Failure Rate Functions to Drive Early Design Decisions

QDD 029 Types of Design Analyses possible with User Process Flowcharts

QDD 028 Design Tolerances Based on Economics (Using the Taguchi Loss Function)

QDD 027 How Many Controls do we Need to Reduce Risk?

QDD 026 Solving Symptoms Instead of Causes?

QDD 025 Do you have SMART ACORN objectives?

QDD 024 Why Look to Standards

QDD 023 Getting the Voice of the Customer

QDD 022 The Way We Test Matters

QDD 021 Designing Specs for QA

QDD 020 Every Failure is a Gift

QDD 019 Understanding the Purposes behind Kaizen

QDD 018 Fishbone Diagram: A Supertool to Understand Problems, Potential Solutions, and Goals

QDD 017 What is ‘Production Equivalent’ and Why Does it Matter?

QDD 016 About Visual Quality Standards

QDD 015 Using the Pareto Principle and Avoiding Common Pitfalls

QDD 014 The Who’s Who of your Quality Team

QDD 013 When it’s Not Normal: How to Choose from a Library of Distributions

QDD 012 What are TQM, QFD, Six Sigma, and Lean?

QDD 011 The Designer’s Important Influence on Monitoring After Launch

QDD 010 How to Handle Competing Failure Modes

QDD 009 About Using Slide Decks for Technical Design Reviews

QDD 008 Remaking Risk-Based Decisions: Allowing Ourselves to Change our Minds.

QDD 007 Need to innovate? Stop brainstorming and try a systematic approach.

QDD 006 HALT! Watch out for that weakest link

QDD 005 The Designer’s Risk Analysis affects Business, Projects, and Suppliers

QDD 004 A big failure and too many causes? Try this analysis.

QDD 003 Why Your Design Inputs Need to Include Quality & Reliability

QDD 002 My product works. Why don’t they want it?

QDD 001 How to Choose the Right Improvement Model

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy