Accendo Reliability

Your Reliability Engineering Professional Development Site

  • Home
  • About
    • Contributors
  • Reliability.fm
    • Speaking Of Reliability
    • Rooted in Reliability: The Plant Performance Podcast
    • Quality during Design
    • Way of the Quality Warrior
    • Critical Talks
    • Dare to Know
    • Maintenance Disrupted
    • Metal Conversations
    • The Leadership Connection
    • Practical Reliability Podcast
    • Reliability Matters
    • Reliability it Matters
    • Maintenance Mavericks Podcast
    • Women in Maintenance
    • Accendo Reliability Webinar Series
  • Articles
    • CRE Preparation Notes
    • on Leadership & Career
      • Advanced Engineering Culture
      • Engineering Leadership
      • Managing in the 2000s
      • Product Development and Process Improvement
    • on Maintenance Reliability
      • Aasan Asset Management
      • AI & Predictive Maintenance
      • Asset Management in the Mining Industry
      • CMMS and Reliability
      • Conscious Asset
      • EAM & CMMS
      • Everyday RCM
      • History of Maintenance Management
      • Life Cycle Asset Management
      • Maintenance and Reliability
      • Maintenance Management
      • Plant Maintenance
      • Process Plant Reliability Engineering
      • ReliabilityXperience
      • RCM Blitz®
      • Rob’s Reliability Project
      • The Intelligent Transformer Blog
      • The People Side of Maintenance
      • The Reliability Mindset
    • on Product Reliability
      • Accelerated Reliability
      • Achieving the Benefits of Reliability
      • Apex Ridge
      • Metals Engineering and Product Reliability
      • Musings on Reliability and Maintenance Topics
      • Product Validation
      • Reliability Engineering Insights
      • Reliability in Emerging Technology
    • on Risk & Safety
      • CERM® Risk Insights
      • Equipment Risk and Reliability in Downhole Applications
      • Operational Risk Process Safety
    • on Systems Thinking
      • Communicating with FINESSE
      • The RCA
    • on Tools & Techniques
      • Big Data & Analytics
      • Experimental Design for NPD
      • Innovative Thinking in Reliability and Durability
      • Inside and Beyond HALT
      • Inside FMEA
      • Integral Concepts
      • Learning from Failures
      • Progress in Field Reliability?
      • R for Engineering
      • Reliability Engineering Using Python
      • Reliability Reflections
      • Testing 1 2 3
      • The Manufacturing Academy
  • eBooks
  • Resources
    • Accendo Authors
    • FMEA Resources
    • Feed Forward Publications
    • Openings
    • Books
    • Webinars
    • Journals
    • Higher Education
    • Podcasts
  • Courses
    • 14 Ways to Acquire Reliability Engineering Knowledge
    • Reliability Analysis Methods online course
    • Measurement System Assessment
    • SPC-Process Capability Course
    • Design of Experiments
    • Foundations of RCM online course
    • Quality during Design Journey
    • Reliability Engineering Statistics
    • Quality Engineering Statistics
    • An Introduction to Reliability Engineering
    • Reliability Engineering for Heavy Industry
    • An Introduction to Quality Engineering
    • Process Capability Analysis course
    • Root Cause Analysis and the 8D Corrective Action Process course
    • Return on Investment online course
    • CRE Preparation Online Course
    • Quondam Courses
  • Webinars
    • Upcoming Live Events
  • Calendar
    • Call for Papers Listing
    • Upcoming Webinars
    • Webinar Calendar
  • Login
    • Member Home

by Dianna Deeney Leave a Comment

QDD 087 Start a System Architecture Diagram Early

Start a System Architecture Diagram Early

New product development projects are really exciting at the start.

Even though we know very little about what the final product is going to look like, we can still use a quick graphical tool to help us direct our engineering attention.

We talk about ways to use a very simple System Architecture Diagram to help us get started and ways we can continue to iterate on it throughout development to help us communicate and make decisions.

 

View the Episode Transcript

We can use a System Architecture Diagram to help us investigate what is new, different, or has been a problem in the past – things that we may want to start looking into at the start.

We can keep it and continue to develop the diagram throughout the product design development.

  • Quality engineers can use it to see natural break points for quality assurance.
  • Reliability engineers can use it to start a Reliability Block Diagram, which can help the team decide on early reliability tests and reliability goals.
  • Manufacturing can start to use it to assess their current capabilities and needs.
  • FMEAs – we don’t want to do them on everything. Where do we need to do more analysis with FMEA to ensure the risks are controlled? And, at what levels? Subsystem and several components?

Overall, it can help identify what the team should be focused on to control the risks, deliver the right requirements, and create a design that is safe, dependable, and easy to use.

Citations:

Other Quality during Design podcast episodes you might like:

5 Options to Manage Risks during Product Engineering

What do we do with FMEA early in design concept?

 

Episode Transcript

We are starting on a new product development project. It’s an exciting time, so what do we work on? First, let’s talk about ways that we can look at the big picture of our concept development to figure out what we should focus most of our effort on in the beginning. Hello and welcome to Quality During Design, the place to use quality thinking to create products, others love for less. Each week we talk about ways to use quality during design, engineering, and product development. My name is Dianna Deeney. I’m a senior level quality professional and engineer with over 20 years of experience in manufacturing and design. Listen in and then join us. Visit quality during design.com.

Do you know what 12 things you should have before a design concept makes it to the engineering drawing board where you’re setting specifications. I’ve got a free checklist for you and you can do some assessments of your own. Where do you stack up with the checklist? You can log into a learning portal to access the checklist and an introduction to more information about how to get those 12 things. To get this free information, just sign up@qualityduringdesign.com. On the homepage, there’s a link in the middle of the page. Just click it and say, I want it.

New product development projects are really exciting, especially at the start. There’s a lot of things that engineers get excited about and that we like to do and figure out, and it’s just the whole project is sitting out before us. We feel like we can just kind of pick what it is, who we want to do or that we’re most excited about. I would encourage us to rein it in a little bit and take a moment with our team to figure out just a high level concept because we wanna be smart with our time and smart with how we develop this new product. Where are we going to apply our resources, which is our time and our energy and our efforts to get the biggest design impact that we can? Something that we can do is create a system architecture diagram. If you search that up on the internet, you’ll see a lot of really complicated diagrams with arrows and lots of boxes, and I’m not even talking about getting that crazy about it.

There is something to say about getting something out of our heads and onto paper or into a model where other people can interact with it. They can better understand what we are thinking. We can better understand what they’re thinking and we can start to develop ideas together. Now, this system architecture diagram, as we mentioned, it doesn’t have have to be complicated. It does work really well if it’s tangible. Now, we could use 3D items blocks to represent these if we really want to. It could be pieces of paper or post-it notes drawings on a whiteboard, and it can be a virtual whiteboard or a virtual posted note setting. Still getting it out of our heads and letting other people see it add to. It helps the whole team to be on the same page with what they are looking at and when they’re examining this concept idea.

For this system architecture diagram, we’re really just pulling out high level concepts of functions or of different subsystems that we know we’re going to have to assemble in order to make this concept a reality. For example, if we know we’re going to be designing a new type of power saw or a homeowner, we know that we’ll at least need a power source, something that’s going to be the cutting surface, some way for the user to interact or hold it, and a way for it to translate the power into a cutting motion. Those are four subsystems that we could conceive of our new product development, and we haven’t even talked to customers or really fully develop the concept yet, but that is good enough for us to start assessing where we should be applying our energies because we’re going to take it to the next step and start thinking about what is new, what is different, and what has been a problem in the past.

If we’re talking about the product itself, are we working with new materials? Is there a different requirement or a different kind of power source that we’re going to be looking into? Do we have a similar product in the market now that we notice we’ve had a problem with? We get a lot of complaints that trace back to the root cause being the switch that we decided to use for that other design. Those are the things that we may wanna spend more effort and time on to better understand as we’re developing this product. The new different or has been a problem isn’t just limited to our product itself. It can also be within our team and within our brain trust. We may have an excellent track record with electro mechanical devices, but what about the blades that cut different materials? We may not have a lot of experience with that.

That may be an area that we identify as having a project risk and some place where we want to redirect some of our efforts to make sure that we design it right. Another benefit of creating the system architecture diagram early besides helping us direct our efforts for concept development is we can iterate on it throughout the product development process. As we make decisions and as we learn about things, we can add details to it and eventually it might look like one of those diagrams that we search up on the internet that are very detailed and look confusing, but because we’ve been developing it all along, it’s going to help our team communicate with each other and with other departments. One of those departments that could possibly use this is the reliability engineering department. They do reliability block diagrams and they assess different reliability of subsystems.

Using these diagrams, they can help assess where you wanna have the most reliability and what that could mean for early testing. We can use this system architecture diagram and the information that we develop from it to also assess what FMEAs (failure mode effects analysis) we may want to do. We don’t need to do FMEA on everything. There may be a few highly critical subsystems or components that we really do want to analyze further with an FMEA to help us make design choices and control risks. Those are just a couple of ways that we could use a system architecture diagram in early concept development. What’s today’s insight to action at the beginning of a new product development project? It’s exciting and there are a lot of inputs that are vying for attention on what to work on. First, we can use a system architecture diagram to get our heads around what might be the most important or what carries the most risk of getting the design done and done well. Then we can continue to iterate on it for other things throughout product development.

If you like this topic or the content in this episode, there’s much more on our website including information about how to join our signature coaching program. The quality during design journey consistency is important, so subscribe to the weekly newsletter. This has been a production of Deeney Enterprises. Thanks for listening.

 

Filed Under: Quality during Design

About Dianna Deeney

Dianna is a senior-level Quality Professional and an experienced engineer. She has worked over 20 years in product manufacturing and design and is active in learning about the latest techniques in business.

Dianna promotes strategic use of quality tools and techniques throughout the design process.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Quality during Design podcast logo

Tips for using quality tools and methods to help you design products others love, for less.


by Dianna Deeney
Quality during Design,
Hosted on Buzzsprout.com
Subscribe and enjoy every episode
Google
Apple
Spotify

Recent Episodes

QDD 128 Leveraging Proven Frameworks or Concept Development

QDD 127 Understanding Cross-Functional Collaboration

QDD 126 Exploring the Problem Space: A Key Principle for Robust Product Design and Project Success

QDD 125 Exploring Product Development and AI Through Literature

QDD 124 Design for User Tasks using an Urgent/Important Matrix

QDD 123 Information Development in Design, with Scott Abel – Part 2 (A Chat with Cross-Functional Experts)

QDD 122 Information Development in Design, with Scott Abel – Part 1 (A Chat with Cross-Functional Experts)

QDD 121 Crafting Effective Technical Documents for the Engineering Field

QDD 120 How to use FMEA for Complaint Investigation

QDD 119 Results-Driven Decisions, Faster: Accelerated Stress Testing as a Reliability Life Test

QDD 118 Journey from Production to Consumption: Enhancing Product Reliability

QDD 117 QDD Redux: Choose Reliability Goals for Modules

QDD 116 Reliability Engineering during Design, with Adam Bahret (A Chat with Cross-Functional Experts)

QDD 115 QDD Redux: 5 Options to Manage Risks during Product Engineering

QDD 114 The Instant Glory of Projects

QDD 113 What to do about Virtual Meetings

QDD 112 QDD Redux: How to self-advocate for more customer face time (and why it’s important)

QDD 111 Engineering with Receptivity, with Sol Rosenbaum (A Chat with Cross-Functional Experts)

QDD 110 Don’t Wish for Cross-Functional Buy-in on Product Designs – Plan to Get It!

QDD 109 Before You Start Engineering Solutions, Do This

QDD 108 QDD Redux Ep. 4: Statistical vs. Practical Significance

QDD 107 QDD Redux Ep. 3: When it’s Not Normal: How to Choose from a Library of Distributions

QDD 106 QDD Redux Ep. 2: How to Handle Competing Failure Modes

QDD 105 QDD Redux Ep. 1: How Many Do We Need to Test?

QDD 104 The Fundamental Thing to Know from Statistics for Design Engineering

QDD 103 What to do for Effective and Efficient Working Meetings

QDD 102 Get Design Inputs with Flowcharts

QDD 101 Quality Tools are Legos of Development (and Their 7 Uses)

QDD 100 Lessons Learned from Coffee Pod Stories

QDD 099 Crucial Conversations in Engineering, with Shere Tuckey (A Chat with Cross-Functional Experts)

QDD 098 Challenges Getting Team Input in Concept Development

QDD 097 Brainstorming within Design Sprints

QDD 096 After the ‘Storm: Compare and Prioritize Ideas

QDD 095 After the ‘Storm: Pareto Voting and Screening Methods

QDD 094 After the ‘Storm: Group and Explore Ideas

QDD 093 Product Design with Brainstorming, with Emily Haidemenos (A Chat with Cross Functional Experts)

QDD 092 Ways to Gather Ideas with a Team

QDD 091 The Spirits of Technical Writing Past, Present, and Future

QDD 090 The Gifts Others Bring

QDD 089 Next Steps after Surprising Test Results

QDD 088 Choose Reliability Goals for Modules

QDD 087 Start a System Architecture Diagram Early

QDD 086 Why Yield Quality in the Front-End of Product Development

QDD 085 Book Cast

QDD 084 Engineering in the Color Economy

QDD 083 Getting to Great Designs

QDD 082 Get Clarity on Goals with a Continuum

QDD 081 Variable Relationships: Correlation and Causation

QDD 080 Use Meetings to Add Productivity

QDD 079 Ways to Partner with Test Engineers

QDD 078 What do We do with FMEA Early in Design Concept?

QDD 077 A Severity Scale based on Quality Dimensions

QDD 076 Use Force Field Analysis to Understand Nuances

QDD 075 Getting Use Information without a Prototype

QDD 074 Finite Element Analysis (FEA) Supplements Test

QDD 073 2 Lessons about Remote Work for Design Engineers

QDD 072 Always Plot the Data

QDD 071 Supplier Control Plans and Design Specs

QDD 070 Use FMEA to Design for In-Process Testing

QDD 069 Use FMEA to Choose Critical Design Features

QDD 068 Get Unstuck: Expand and Contract Our Problem

QDD 067 Get Unstuck: Reframe our Problem

QDD 066 5 Options to Manage Risks during Product Engineering

QDD 065 Prioritizing Technical Requirements with a House of Quality

QDD 064 Gemba for Product Design Engineering

QDD 063 Product Design from a Data Professional Viewpoint, with Gabor Szabo (A Chat with Cross Functional Experts)

QDD 062 How Does Reliability Engineering Affect (Not Just Assess) Design?

QDD 061 How to use FMEA for Complaint Investigation

QDD 060 3 Tips for Planning Design Reviews

QDD 059 Product Design from a Marketing Viewpoint, with Laura Krick (A Chat with Cross Functional Experts)

QDD 058 UFMEA vs. DFMEA

QDD 057 Design Input & Specs vs. Test & Measure Capability

QDD 056 ALT vs. HALT

QDD 055 Quality as a Strategic Asset vs. Quality as a Control

QDD 054 Design Specs vs. Process Control, Capability, and SPC

QDD 053 Internal Customers vs. External Customers

QDD 052 Discrete Data vs. Continuous Data

QDD 051 Prevention Controls vs. Detection Controls

QDD 050 Try this Method to Help with Complex Decisions (DMRCS)

QDD 049 Overlapping Ideas: Quality, Reliability, and Safety

QDD 048 Using SIPOC to Get Started

QDD 047 Risk Barriers as Swiss Cheese?

QDD 046 Environmental Stress Testing for Robust Designs

QDD 045 Choosing a Confidence Level for Test using FMEA

QDD 044 Getting Started with FMEA – It All Begins with a Plan

QDD 043 How can 8D help Solve my Recurring Problem?

QDD 042 Mistake-Proofing – The Poka-Yoke of Usability

QDD 041 Getting Comfortable with using Reliability Results

QDD 040 How to Self-Advocate for More Customer Face Time (and why it’s important)

QDD 039 Choosing Quality Tools (Mind Map vs. Flowchart vs. Spaghetti Diagram)

QDD 038 The DFE Part of DFX (Design For Environment and eXcellence)

QDD 037 Results-Driven Decisions, Faster: Accelerated Stress Testing as a Reliability Life Test

QDD 036 When to use DOE (Design of Experiments)?

QDD 035 Design for User Tasks using an Urgent/Important Matrix

QDD 034 Statistical vs. Practical Significance

QDD 033 How Many Do We Need To Test?

QDD 032 Life Cycle Costing for Product Design Choices

QDD 031 5 Aspects of Good Reliability Goals and Requirements

QDD 030 Using Failure Rate Functions to Drive Early Design Decisions

QDD 029 Types of Design Analyses possible with User Process Flowcharts

QDD 028 Design Tolerances Based on Economics (Using the Taguchi Loss Function)

QDD 027 How Many Controls do we Need to Reduce Risk?

QDD 026 Solving Symptoms Instead of Causes?

QDD 025 Do you have SMART ACORN objectives?

QDD 024 Why Look to Standards

QDD 023 Getting the Voice of the Customer

QDD 022 The Way We Test Matters

QDD 021 Designing Specs for QA

QDD 020 Every Failure is a Gift

QDD 019 Understanding the Purposes behind Kaizen

QDD 018 Fishbone Diagram: A Supertool to Understand Problems, Potential Solutions, and Goals

QDD 017 What is ‘Production Equivalent’ and Why Does it Matter?

QDD 016 About Visual Quality Standards

QDD 015 Using the Pareto Principle and Avoiding Common Pitfalls

QDD 014 The Who’s Who of your Quality Team

QDD 013 When it’s Not Normal: How to Choose from a Library of Distributions

QDD 012 What are TQM, QFD, Six Sigma, and Lean?

QDD 011 The Designer’s Important Influence on Monitoring After Launch

QDD 010 How to Handle Competing Failure Modes

QDD 009 About Using Slide Decks for Technical Design Reviews

QDD 008 Remaking Risk-Based Decisions: Allowing Ourselves to Change our Minds.

QDD 007 Need to innovate? Stop brainstorming and try a systematic approach.

QDD 006 HALT! Watch out for that weakest link

QDD 005 The Designer’s Risk Analysis affects Business, Projects, and Suppliers

QDD 004 A big failure and too many causes? Try this analysis.

QDD 003 Why Your Design Inputs Need to Include Quality & Reliability

QDD 002 My product works. Why don’t they want it?

QDD 001 How to Choose the Right Improvement Model

Join Accendo

Receive information and updates about articles and many other resources offered by Accendo Reliability by becoming a member.

It’s free and only takes a minute.

Join Today

© 2025 FMS Reliability · Privacy Policy · Terms of Service · Cookies Policy